Sehr starke Organosuperbasen durch Verknüpfung von Imidazol‐ und Guanidinbasen – Synthese, Struktur und Basizität

Neue Strukturmotive fur Organosuperbasen, die leicht zuganglich sind und hohe Basizitaten aufweisen, sind fur viele Bereiche der Chemie dringend notwendig. Wir berichten hier uber die Synthese von N,N′-Bis(imidazolyl)guanidin-Basen (BIG-Basen). Ihre pKα-Werte wurden zu 26.1–29.3 in THF bestimmt. Sie sind damit wahrscheinlich die starksten phosphorfreien organischen Basen sowohl in Losung als auch in der Gasphase. Rechnungen halfen bei der Bestimmung der strukturellen und elektronischen Faktoren, die zur beobachteten hohen Basizitat beitragen.

[1]  Z. Maksić,et al.  Advances in determining the absolute proton affinities of neutral organic molecules in the gas phase and their interpretation: a theoretical account. , 2012, Chemical reviews.

[2]  Manoj K. Kesharwani,et al.  Rational design of a new class of polycyclic organic bases bearing two superbasic sites and their applications in the CO2 capture and activation process. , 2012, Chemical communications.

[3]  Eva Roos Nerut,et al.  A new class of organosuperbases, N-alkyl- and N-aryl-1,3-dialkyl-4,5-dimethylimidazol-2-ylidene amines: synthesis, structure, pK(BH+) measurements, and properties. , 2012, Chemistry.

[4]  T. Lambert,et al.  Enantioselective Brønsted base catalysis with chiral cyclopropenimines. , 2012, Journal of the American Chemical Society.

[5]  M. Eckert-Maksić,et al.  Molecular structure and acid/base properties of 1,2-dihydro-1,3,5-triazine derivatives , 2012 .

[6]  S. Boileau,et al.  Activation in anionic polymerization: Why phosphazene bases are very exciting promoters , 2011 .

[7]  W. Thiel,et al.  Synthese und Koordinationseigenschaften von Stickstoff(I)‐ Liganden , 2010 .

[8]  W. Thiel,et al.  Synthesis and coordination properties of nitrogen(I)-based ligands. , 2010, Angewandte Chemie.

[9]  J. Verkade,et al.  P(PhCH2NCH2CH2)3N catalysis of Mukaiyama aldol reactions of aliphatic, aromatic, and heterocyclic aldehydes and trifluoromethyl phenyl ketone. , 2009, The Journal of organic chemistry.

[10]  Chinta Reddy Venkat Reddy,et al.  Polymer-Supported Azidoproazaphosphatrane: A Recyclable Catalyst for the Room-Temperature Transformation of Triglycerides to Biodiesel , 2007 .

[11]  I. Leito,et al.  Experimental gas-phase basicity scale of superbasic phosphazenes. , 2007, The journal of physical chemistry. A.

[12]  Choon‐Hong Tan,et al.  Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones. , 2006, Journal of the American Chemical Society.

[13]  Y. Kondo,et al.  Phosphazene base-catalyzed condensation of trimethylsilylacetate with carbonyl compounds. , 2006, Chemical communications.

[14]  Z. Maksić,et al.  High basicity of phosphorus-proton affinity of tris-(tetramethylguanidinyl)phosphine and tris-(hexamethyltriaminophosphazenyl)phosphine by DFT calculations. , 2006, Chemical communications.

[15]  G. Röschenthaler,et al.  Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase. , 2005, Journal of the American Chemical Society.

[16]  Z. Maksić,et al.  1,8-Bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN: a superbasic bisphosphazene "proton sponge". , 2005, Journal of the American Chemical Society.

[17]  J. Verkade,et al.  P[N(iBu)CH2CH2]3N: A versatile non-ionic base for the synthesis of higher coordinate silicates , 2005 .

[18]  I. Leito,et al.  Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. , 2005, The Journal of organic chemistry.

[19]  W. Su,et al.  Highly active palladium catalysts supported by bulky proazaphosphatrane ligands for Stille cross-coupling: coupling of aryl and vinyl chlorides, room temperature coupling of aryl bromides, coupling of aryl triflates, and synthesis of sterically hindered biaryls. , 2004, Journal of the American Chemical Society.

[20]  I. Leito,et al.  Acid-base equilibria in nonpolar media. 4. Extension of the self-consistent basicity scale in THF medium. Gas-phase basicities of phosphazenes. , 2003, The Journal of organic chemistry.

[21]  J. Verkade,et al.  P[N(i-Bu)CH2CH2]3N: a versatile ligand for the Pd-catalyzed amination of aryl chlorides. , 2003, Organic letters.

[22]  R. Gschwind,et al.  1,8-bis(tetramethylguanidino)naphthalene (TMGN): a new, superbasic and kinetically active "proton sponge". , 2002, Chemistry.

[23]  I. Leito,et al.  Acid-base equilibria in nonpolar media. 2.(1) Self-consistent basicity scale in THF solution ranging from 2-methoxypyridine to EtP(1)(pyrr) phosphazene. , 2002, The Journal of organic chemistry.

[24]  J. Rebek,et al.  Chiral Salen ± Aluminum Complexes as Catalysts for Enantioselective Aldol Reactions of Aldehydes and 5-Alkoxyoxazoles : An Efficient Approach to the Asymmetric Synthesis of syn and anti b-Hydroxy-a-amino Acid Derivatives * * , 2001 .

[25]  Verkade,et al.  pKa measurements of P(RNCH2CH3)3N , 2000, The Journal of organic chemistry.

[26]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[27]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[28]  I. Leito,et al.  Basicity of 3-aminopropionamidine derivatives in water and dimethyl sulphoxide. Implication for a pivotal step in the synthesis of distamycin A analogues , 1996 .

[29]  K. Peters,et al.  How Strong and How Hindered Can Uncharged Phosphazene Bases Be , 1993 .

[30]  H. Schnering,et al.  Wie stark und wie gehindert können ungeladene Phosphazenbasen sein , 1993 .

[31]  J. Verkade Atranes: New Examples with Unexpected Properties , 1993 .

[32]  Reinhurd Schwesinger Starke ungeladene Stickstoffbasen , 1990 .

[33]  K. Peters,et al.  Novel, Very Strongly Basic, Pentacyclic “Proton Sponges” with Vinamidine Structure , 1987 .

[34]  R. Schwesinger Tricyclic 2,4‐Diaminovinamidines– Readily Accessible, Very Strong CHN Bases , 1987 .

[35]  H. Schnering,et al.  Neuartige, sehr stark basische, pentacyclische „Protonenschwämme”︁ mit Vinamidinstruktur , 1987 .

[36]  R. Schwesinger Tricyclische 2,4‐Diaminovinamidine — leicht zugängliche, sehr starke CHN‐Basen , 1987 .