Sehr starke Organosuperbasen durch Verknüpfung von Imidazol‐ und Guanidinbasen – Synthese, Struktur und Basizität
暂无分享,去创建一个
[1] Z. Maksić,et al. Advances in determining the absolute proton affinities of neutral organic molecules in the gas phase and their interpretation: a theoretical account. , 2012, Chemical reviews.
[2] Manoj K. Kesharwani,et al. Rational design of a new class of polycyclic organic bases bearing two superbasic sites and their applications in the CO2 capture and activation process. , 2012, Chemical communications.
[3] Eva Roos Nerut,et al. A new class of organosuperbases, N-alkyl- and N-aryl-1,3-dialkyl-4,5-dimethylimidazol-2-ylidene amines: synthesis, structure, pK(BH+) measurements, and properties. , 2012, Chemistry.
[4] T. Lambert,et al. Enantioselective Brønsted base catalysis with chiral cyclopropenimines. , 2012, Journal of the American Chemical Society.
[5] M. Eckert-Maksić,et al. Molecular structure and acid/base properties of 1,2-dihydro-1,3,5-triazine derivatives , 2012 .
[6] S. Boileau,et al. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters , 2011 .
[7] W. Thiel,et al. Synthese und Koordinationseigenschaften von Stickstoff(I)‐ Liganden , 2010 .
[8] W. Thiel,et al. Synthesis and coordination properties of nitrogen(I)-based ligands. , 2010, Angewandte Chemie.
[9] J. Verkade,et al. P(PhCH2NCH2CH2)3N catalysis of Mukaiyama aldol reactions of aliphatic, aromatic, and heterocyclic aldehydes and trifluoromethyl phenyl ketone. , 2009, The Journal of organic chemistry.
[10] Chinta Reddy Venkat Reddy,et al. Polymer-Supported Azidoproazaphosphatrane: A Recyclable Catalyst for the Room-Temperature Transformation of Triglycerides to Biodiesel , 2007 .
[11] I. Leito,et al. Experimental gas-phase basicity scale of superbasic phosphazenes. , 2007, The journal of physical chemistry. A.
[12] Choon‐Hong Tan,et al. Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones. , 2006, Journal of the American Chemical Society.
[13] Y. Kondo,et al. Phosphazene base-catalyzed condensation of trimethylsilylacetate with carbonyl compounds. , 2006, Chemical communications.
[14] Z. Maksić,et al. High basicity of phosphorus-proton affinity of tris-(tetramethylguanidinyl)phosphine and tris-(hexamethyltriaminophosphazenyl)phosphine by DFT calculations. , 2006, Chemical communications.
[15] G. Röschenthaler,et al. Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase. , 2005, Journal of the American Chemical Society.
[16] Z. Maksić,et al. 1,8-Bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN: a superbasic bisphosphazene "proton sponge". , 2005, Journal of the American Chemical Society.
[17] J. Verkade,et al. P[N(iBu)CH2CH2]3N: A versatile non-ionic base for the synthesis of higher coordinate silicates , 2005 .
[18] I. Leito,et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. , 2005, The Journal of organic chemistry.
[19] W. Su,et al. Highly active palladium catalysts supported by bulky proazaphosphatrane ligands for Stille cross-coupling: coupling of aryl and vinyl chlorides, room temperature coupling of aryl bromides, coupling of aryl triflates, and synthesis of sterically hindered biaryls. , 2004, Journal of the American Chemical Society.
[20] I. Leito,et al. Acid-base equilibria in nonpolar media. 4. Extension of the self-consistent basicity scale in THF medium. Gas-phase basicities of phosphazenes. , 2003, The Journal of organic chemistry.
[21] J. Verkade,et al. P[N(i-Bu)CH2CH2]3N: a versatile ligand for the Pd-catalyzed amination of aryl chlorides. , 2003, Organic letters.
[22] R. Gschwind,et al. 1,8-bis(tetramethylguanidino)naphthalene (TMGN): a new, superbasic and kinetically active "proton sponge". , 2002, Chemistry.
[23] I. Leito,et al. Acid-base equilibria in nonpolar media. 2.(1) Self-consistent basicity scale in THF solution ranging from 2-methoxypyridine to EtP(1)(pyrr) phosphazene. , 2002, The Journal of organic chemistry.
[24] J. Rebek,et al. Chiral Salen ± Aluminum Complexes as Catalysts for Enantioselective Aldol Reactions of Aldehydes and 5-Alkoxyoxazoles : An Efficient Approach to the Asymmetric Synthesis of syn and anti b-Hydroxy-a-amino Acid Derivatives * * , 2001 .
[25] Verkade,et al. pKa measurements of P(RNCH2CH3)3N , 2000, The Journal of organic chemistry.
[26] E. P. Hunter,et al. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .
[27] Paul von Ragué Schleyer,et al. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.
[28] I. Leito,et al. Basicity of 3-aminopropionamidine derivatives in water and dimethyl sulphoxide. Implication for a pivotal step in the synthesis of distamycin A analogues , 1996 .
[29] K. Peters,et al. How Strong and How Hindered Can Uncharged Phosphazene Bases Be , 1993 .
[30] H. Schnering,et al. Wie stark und wie gehindert können ungeladene Phosphazenbasen sein , 1993 .
[31] J. Verkade. Atranes: New Examples with Unexpected Properties , 1993 .
[32] Reinhurd Schwesinger. Starke ungeladene Stickstoffbasen , 1990 .
[33] K. Peters,et al. Novel, Very Strongly Basic, Pentacyclic “Proton Sponges” with Vinamidine Structure , 1987 .
[34] R. Schwesinger. Tricyclic 2,4‐Diaminovinamidines– Readily Accessible, Very Strong CHN Bases , 1987 .
[35] H. Schnering,et al. Neuartige, sehr stark basische, pentacyclische „Protonenschwämme”︁ mit Vinamidinstruktur , 1987 .
[36] R. Schwesinger. Tricyclische 2,4‐Diaminovinamidine — leicht zugängliche, sehr starke CHN‐Basen , 1987 .