Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review

Abstract An overview of the micromechanical theoretical and numerical models of wood is presented. Different methods of analysis of the effects of wood microstructures at different scale levels on the mechanical behaviour, deformation and strength of wood are discussed and compared. Micromechanical models of deformation and strength of wood are divided into three groups: cellular models (applied most often to the mesoscale or cell scale analysis of the wood deformation), continuum micromechanics and homogenization based methods, models which consider wood as a composite and are applied mainly to the analysis of wood at the microscale (cell wall scale) level and multiscale models. Lattice and composite models, which are used to analyze the damage and fracture of wood, are considered in a separate section. The areas of applicability and strong sides of each approach are discussed.

[1]  L. Salmén,et al.  Cell wall properties and their effects on the mechanical properties of fibers , 2002 .

[2]  T. Ohgama,et al.  Tangential Youngs Modulus of Coniferous Early Wood Investigated Using Cell Models , 1999 .

[3]  Lennart Salmén,et al.  Micromechanical understanding of the cell-wall structure. , 2004, Comptes rendus biologies.

[4]  N. Barber A Theoretical Model of Shrinking Wood , 1968 .

[5]  Michael F. Ashby,et al.  On the mechanics of balsa and other woods , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  William G. Davids,et al.  Coupled experiments and simulations of microstructural damage in wood , 2002 .

[7]  Misato Norimoto,et al.  Cell wall thickness and tangential Young's modulus in coniferous early wood , 2000, Journal of Wood Science.

[8]  L. Salmén,et al.  Variations in Transverse Fibre Wall Properties: Relations Between Elastic Properties and Structure , 2000 .

[9]  Kent Persson,et al.  Micromechanical Modelling of Wood and Fibre Properties , 2000 .

[10]  Hiroyuki Yamamoto,et al.  Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum , 2005, Journal of Wood Science.

[11]  Svetlana Vasic,et al.  Experimental and numerical investigation of wood fracture mechanisms at different humidity levels , 2007 .

[12]  Shigeyasu Amada,et al.  Fiber texture and mechanical graded structure of bamboo , 1997 .

[13]  Christian Hellmich,et al.  Development and experimental validation of a continuum micromechanics model for the elasticity of wood , 2005 .

[14]  George Jeronimidis,et al.  Composites with high work of fracture , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  Thomas E. McLain,et al.  Quantitative wood anatomy-relating anatomy to transverse tensile strength , 2007 .

[16]  L. Berglund,et al.  In situ observations of fracture mechanisms for radial cracks in wood , 2000 .

[17]  Meng Gong,et al.  Fracture and fatigue in wood , 2003 .

[18]  Alfred Teischinger,et al.  Longitudinal shear properties of European larch wood related to cell-wall structure , 2007 .

[19]  Stefanie E. Stanzl-Tschegg,et al.  Microstructure and fracture mechanical response of wood , 2006 .

[20]  Hans Petersson,et al.  NONLINEAR MECHANICAL BEHAVIOUR AND ANALYSIS OF WOOD AND FIBRE MATERIALS , 1999 .

[21]  Jozsef Bodig,et al.  Mechanics of Wood and Wood Composites , 1982 .

[22]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[23]  Falk K. Wittel,et al.  Modeling of damage evolution in soft-wood perpendicular to grain by means of a discrete element approach , 2004 .

[24]  Ian Smith,et al.  Fracture behaviour of softwood , 2003 .

[25]  G. Fernlund,et al.  Fracture of Solid Wood: A Review of Structure and Properties at Different Length Scales , 2007 .

[26]  L. Berglund,et al.  Modeling of cell wall drying stresses in wood , 2002, Wood Science and Technology.

[27]  G. Jeronimidis,et al.  The fracture behaviour of wood and the relations between toughness and morphology , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  J. Bodig,et al.  Prediction of fracture toughness of conifers , 2007 .

[29]  William G. Davids,et al.  Morphological lattice models for the simulation of softwood failure and fracture , 2007 .

[30]  P. T. Larsson,et al.  Cellulose fibril aggregation — an inherent property of kraft pulps , 2001 .

[31]  J. Woodhouse,et al.  The influence of cell geometry on the elasticity of softwood , 1994 .

[32]  E. Garboczi,et al.  New method for simulating fracture using an elastically uniform random geometry lattice , 1996 .

[33]  William A. Curtin,et al.  Brittle fracture in disordered materials: A spring network model , 1990 .

[34]  H. Yamamoto,et al.  A model of the anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber's wood fiber model , 1999, Wood Science and Technology.

[35]  I. Smith,et al.  Bridging crack model for fracture of spruce , 2002 .

[36]  Y. Kojima,et al.  Properties of cell wall constituents in relation to longitudinal elasticity of wood , 2002, Wood Science and Technology.

[37]  R. J. Astley,et al.  Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.

[38]  Karl J. Niklas,et al.  Plant Biomechanics: An Engineering Approach to Plant Form and Function , 1993 .

[39]  Leon Mishnaevsky,et al.  Computational mesomechanics of composites , 2007 .

[40]  Milan Jirásek,et al.  Macroscopic fracture characteristics of random particle systems , 1994 .

[41]  B. Meylan,et al.  The Anisotropic Shrinkage of Wood. A Theoretical Model , 1964 .

[42]  I. D. Cave A theory of the shrinkage of wood , 1972, Wood Science and Technology.

[43]  Stefanie E. Stanzl-Tschegg,et al.  Fracture characteristics of different wood species under mode I loading perpendicular to the grain , 2002 .

[44]  Parviz Navi,et al.  Micromechanical approach to wood fracture by three-dimensional mixed lattice-continuum model at fiber level , 2007, Wood Science and Technology.

[45]  M. Fujita,et al.  Transverse Young's Moduli and Cell Shapes in Coniferous Early Wood , 2002 .

[46]  Hiroyuki Yamamoto Role of the gelatinous layer on the origin of the physical properties of the tension wood , 2004, Journal of Wood Science.

[47]  Peter Fratzl,et al.  Cellulose and collagen: from fibres to tissues , 2003 .

[48]  R. E. Mark Cell Wall Mechanics of Tracheids , 1967 .

[49]  Christian Hellmich,et al.  Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach , 2007 .

[50]  P. Navi,et al.  Experimental observations and micromechanical modeling of successive-damaging phenomenon in wood cells’ tensile behavior , 2006, Wood Science and Technology.

[51]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[52]  K. Niklas,et al.  The Influence of Rays on the Transverse Elastic Anisotropy in Green Wood of Deciduous Trees , 2001 .

[53]  H. Tattersall,et al.  The work of fracture and its measurement in metals, ceramics and other materials , 1966 .

[54]  E. Garboczi,et al.  FRACTURE SIMULATIONS OF CONCRETE USING LATTICE MODELS : COMPUTATIONAL ASPECTS , 1997 .

[55]  J. E. Gordon,et al.  Work of fracture of natural cellulose , 1974, Nature.