VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA,

Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na i D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from the Keck I Telescope and the Hobby–Eberly Telescope. The data span a time frame of approximately three months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na i D absorption lines strengthened significantly with time, indicating a total column density increase of ∼2.5 × 1012 cm−2. The data limit the typical timescale for the variability to be more than 2 days but less than 10 days. The changes appear to be most prominent after maximum light rather than at earlier times when the ultraviolet flux from the SN peaks. As with SN 2006X, we detect no change in the Ca ii H and K absorption lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two supernovae exhibiting variable absorption, SN 2007le is not highly reddened (EB − V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization calculations show that the data are consistent with a dense (107 cm−3) cloud or clouds of gas located ∼0.1 pc (3 × 1017 cm) from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present possible evidence for narrow Hα emission associated with the SN, which will require deep imaging and spectroscopy at late times to confirm.

[1]  J. Blondin,et al.  CIRCUMSTELLAR SHELLS IN ABSORPTION IN TYPE Ia SUPERNOVAE , 2009, 0905.3753.

[2]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[3]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[4]  Caltech,et al.  THE GOLDEN STANDARD TYPE Ia SUPERNOVA 2005cf: OBSERVATIONS FROM THE ULTRAVIOLET TO THE NEAR-INFRARED WAVEBANDS , 2008, 0811.1205.

[5]  T. Matheson,et al.  A SECOND CASE OF VARIABLE Na i D LINES IN A HIGHLY REDDENED TYPE Ia SUPERNOVA , 2008, 0811.0002.

[6]  J. G. Hern'andez,et al.  THE CHEMICAL ABUNDANCES OF TYCHO G IN SUPERNOVA REMNANT 1572 , 2008, 0809.0601.

[7]  Lifan Wang,et al.  Spectropolarimetry of Supernovae , 2008, 0811.1054.

[8]  A. Weiss,et al.  The impact of type Ia supernovae on main sequence binary companions , 2008, 0807.3331.

[9]  N. Cox,et al.  Interstellar atoms, molecules and diffuse bands toward SN2006X in M 100 , 2008, 0805.3028.

[10]  M. Valle,et al.  Transient Heavy Element Absorption Systems in Novae: Episodic Mass Ejection from the Secondary Star , 2008, 0805.1372.

[11]  R. Kotak,et al.  SN 2005 gj: evidence for LBV supernovae progenitors? , 2008, 0804.2392.

[12]  Arlin Crotts,et al.  The Nature and Geometry of the Light Echo from SN 2006X , 2008, 0804.2030.

[13]  Tokyo,et al.  Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor , 2008, 0804.0909.

[14]  R. Kirshner,et al.  Properties of the ultraviolet flux of Type Ia supernovae : an analysis with synthetic spectra of SN 2001ep and SN 2001eh , 2008, 0803.0871.

[15]  N. Chugai Circumstellar Na I and Ca II absorption lines of type Ia supernovae in the symbiotic scenario , 2008, 0801.4468.

[16]  R. Kotak,et al.  The Outermost Ejecta of Type Ia Supernovae , 2007, 0712.2823.

[17]  Lifan Wang,et al.  The Detection of a Light Echo from the Type Ia Supernova 2006X in M100 , 2007, 0711.2570.

[18]  M. Dolci,et al.  SN 2002cv: a heavily obscured Type Ia supernova , 2007, 0710.4503.

[19]  J. Hughes,et al.  Chandra Observations of Type Ia Supernovae: Upper Limits to the X-Ray Flux of SN 2002bo, SN 2002ic, SN 2005gj, and SN 2005ke , 2007, 0710.3190.

[20]  C. Prieto,et al.  Constraints on Circumstellar Material around the Type Ia Supernova 2007af , 2007, 0709.1472.

[21]  L. Pasquini,et al.  Upper limit for circumstellar gas around the type Ia SN 2000cx , 2007, 0708.3698.

[22]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[23]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[24]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[25]  J. Wheeler,et al.  SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology , 2007, 0705.4467.

[26]  R. Corradi,et al.  The metallicity gradient of M 33: chemical abundances of H ii regions , 2007, 0705.3116.

[27]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[28]  Lifan Wang,et al.  Spectropolarimetric Diagnostics of Thermonuclear Supernova Explosions , 2006, Science.

[29]  E. Quataert,et al.  The Ionization State of Sodium in Galactic Winds , 2006, astro-ph/0609213.

[30]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[31]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[32]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[33]  S. Valenti,et al.  Supernova 2002ic: The Collapse of a Stripped-Envelope, Massive Star in a Dense Medium? , 2006, astro-ph/0611125.

[34]  M. Doi,et al.  Searching for a Companion Star of Tycho's Type Ia Supernova with Optical Spectroscopic Observations , 2006, 0706.3259.

[35]  P. Brown,et al.  X-Ray Observations of Type Ia Supernovae with Swift: Evidence of Circumstellar Interaction for SN 2005ke , 2006, astro-ph/0607620.

[36]  G. Smadja,et al.  Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope , 2006, astro-ph/0606499.

[37]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[38]  N. Badnell Radiative Recombination Data for Modeling Dynamic Finite-Density Plasmas , 2006, astro-ph/0604144.

[39]  N. Panagia,et al.  A Search for Radio Emission from Type Ia Supernovae , 2006, astro-ph/0603808.

[40]  Douglas C. Leonard,et al.  Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra , 2006, 0710.3166.

[41]  K. Borkowski,et al.  Constraints on the Physics of Type Ia Supernovae from the X-Ray Spectrum of the Tycho Supernova Remnant , 2005, astro-ph/0511140.

[42]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[43]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[44]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[45]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.

[46]  R. Kotak,et al.  High-Velocity Features: A Ubiquitous Property of Type Ia Supernovae , 2005, astro-ph/0502531.

[47]  U. Oklahoma,et al.  Early and late time VLT spectroscopy of SN 2001el - Progenitor constraints for a type Ia supernova , 2005, astro-ph/0501433.

[48]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[49]  R. Kotak,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.

[50]  Harry L. Shipman,et al.  White Dwarfs: Cosmological and Galactic Probes , 2005 .

[51]  Research Center for the Early Universe,et al.  High-velocity features in the spectra of the Type Ia supernova SN 1999ee: a property of the explosion or evidence of circumstellar interaction? , 2004, astro-ph/0411566.

[52]  S. Smartt,et al.  The binary progenitor of Tycho Brahe's 1572 supernova , 2004, Nature.

[53]  et al,et al.  The 1000 Brightest HIPASS Galaxies: H I Properties , 2004, astro-ph/0404436.

[54]  G. Ferland,et al.  Grain size distributions and photoelectric heating in ionized media , 2004, astro-ph/0402381.

[55]  M. Turatto,et al.  Supernova 2002bo: inadequacy of the single parameter description , 2003, astro-ph/0309665.

[56]  P. Ruiz-Lapuente Tycho Brahe’s Supernova: Light from Centuries Past , 2003, astro-ph/0309009.

[57]  R. Foley,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[58]  S. E. Persson,et al.  An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.

[59]  F. Bresolin,et al.  The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale , 2003, astro-ph/0303452.

[60]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[61]  E. Ofek,et al.  The Unique Type Ia Supernova 2000cx in NGC 524 , 2001, astro-ph/0107318.

[62]  E. Fitzpatrick,et al.  Variable Interstellar Absorption toward the Halo Star HD 219188: Implications for Small-Scale Interstellar Structure , 2001, astro-ph/0103172.

[63]  D. Howell The Progenitors of Subluminous Type Ia Supernovae , 2001, astro-ph/0105246.

[64]  Thomas Matheson,et al.  Optical Spectroscopy of Type Ib/c Supernovae , 2001, astro-ph/0101119.

[65]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[66]  L. Ho,et al.  Detailed Analysis of Early to Late-Time Spectra of Supernova 1993J , 2000, astro-ph/0006264.

[67]  A. Filippenko,et al.  The Lick Observatory Supernova Search , 1999, astro-ph/9912336.

[68]  Adam Burrows,et al.  Type Ia Supernova Explosions in Binary Systems: The Impact on the Secondary Star and Its Consequences , 1999, astro-ph/9908116.

[69]  Robert G. Tull,et al.  High-resolution fiber-coupled spectrograph of the Hobby-Eberly Telescope , 1998, Astronomical Telescopes and Instrumentation.

[70]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[71]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[72]  L. Lucy,et al.  The properties of the peculiar type IA supernova 1991bg - II. The amount of ^56Ni and the total ejecta mass determined from spectrum synthesis and energetics considerations , 1997 .

[73]  R. Schommer,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[74]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[75]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[76]  P. Nugent,et al.  Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B , 1995 .

[77]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[78]  A. Hamilton,et al.  Discovery of the Remnant of S Andromedae (SN 1885) in M31 , 1989 .

[79]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[80]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[81]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[82]  G. de Vaucouleurs,et al.  S Andromedae 1885 - A centennial review , 1985 .

[83]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[84]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[85]  E. Salpeter,et al.  Destruction mechanisms for interstellar dust , 1979 .

[86]  A. Oemler,et al.  Type I supernovae come from short-lived stars , 1979 .

[87]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[88]  D. Morton,et al.  Interstellar absorption lines in the spectrum of Zeta Ophiuchi , 1975 .

[89]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[90]  D. Wentzel,et al.  On a Correlation Between the Radial Velocities of Optical and Radio Interstellar Lines. , 1962 .

[91]  L. Spitzer Behavior of Matter in Space. , 1954 .

[92]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .