Robust nonlinear optimal control of dynamic systems with affine uncertainties

In this paper we present novel strategies to formulate and solve nonlinear robust optimal control problems for dynamic systems which are affine in the uncertainty. We suggest the definition of a constrained Lyapunov differential equation providing robustness interpretations with respect to L2-bounded disturbances in the context of inequality state constraints. This interpretation allows us to compute the robust counterpart formulation for optimal control problems which are affine in the uncertainty. Furthermore, we demonstrate the applicability of the presented formulation for a numerical test example: a crane should carry a mass from one to another point while an unknown force excites the open-loop controlled system. The robustly optimized input allows us to control the mass to a target region while satisfying inequality constraints on the worst-case excitation.

[1]  Paolo Bolzern,et al.  The periodic Lyapunov equation , 1988 .

[2]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[3]  Patrizio Colaneri,et al.  Stability Analysis of Linear Periodic Systems Via the Lyapunov Equation , 1984 .

[4]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[5]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[6]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[7]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[8]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems , 1960 .

[9]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[10]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Francesco Amato,et al.  Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters , 2006 .

[12]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[13]  Moritz Diehl,et al.  An approximation technique for robust nonlinear optimization , 2006, Math. Program..

[14]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[15]  Jonathan P. How,et al.  Analysis of linear parameter‐varying systems using a non‐smooth dissipative systems framework , 2002 .

[16]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.