A Simple and Adaptive Dispersion Regression Model for Count Data

Regression for count data is widely performed by models such as Poisson, negative binomial (NB) and zero-inflated regression. A challenge often faced by practitioners is the selection of the right model to take into account dispersion, which typically occurs in count datasets. It is highly desirable to have a unified model that can automatically adapt to the underlying dispersion and that can be easily implemented in practice. In this paper, a discrete Weibull regression model is shown to be able to adapt in a simple way to different types of dispersions relative to Poisson regression: overdispersion, underdispersion and covariate-specific dispersion. Maximum likelihood can be used for efficient parameter estimation. The description of the model, parameter inference and model diagnostics is accompanied by simulated and real data analyses.

[1]  Gary K Grunwald,et al.  A statistical model for under‐ or overdispersed clustered and longitudinal count data , 2011, Biometrical journal. Biometrische Zeitschrift.

[2]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[3]  James D Englehardt,et al.  The Discrete Weibull Distribution: An Alternative for Correlated Counts with Confirmation for Microbial Counts in Water , 2011, Risk analysis : an official publication of the Society for Risk Analysis.

[4]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[5]  Dilip Roy,et al.  Discrete Rayleigh distribution , 2004, IEEE Transactions on Reliability.

[6]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[7]  Kimberly F. Sellers,et al.  A Flexible Regression Model for Count Data , 2008, 1011.2077.

[8]  Gauss M. Cordeiro,et al.  Diagnostic tools in generalized Weibull linear regression models , 2013 .

[9]  A. M. Abouammoh,et al.  On estimating parameters in a discrete Weibull distribution , 1989 .

[10]  F. Famoye Restricted generalized poisson regression model , 1993 .

[11]  A. Conde-Sánchez,et al.  A hyper-Poisson regression model for overdispersed and underdispersed count data , 2013, Comput. Stat. Data Anal..

[12]  C. Mitchell Dayton,et al.  Journal of Modern Applied Statistical Methods Invited Articles Model Comparisons Using Information Measures , 2022 .

[13]  Mevin B. Hooten,et al.  Count Data Regression , 2019, Bringing Bayesian Models to Life.

[14]  K. B. Kulasekera Approximate MLE's of the parameters of a discrete Weibull distribution with type I censored data , 1994 .

[15]  Michael Frueh,et al.  Plots Transformations And Regression An Introduction To Graphical Methods Of Diagnostic Regression Analysis , 2016 .

[16]  Achim Zeileis,et al.  Diagnostic Checking in Regression Relationships , 2015 .

[17]  A. Colin Cameron,et al.  Bivariate Count Data Regression Using Series Expansions: With Applications , 1997 .

[18]  B. Efron Double Exponential Families and Their Use in Generalized Linear Regression , 1986 .

[19]  Joseph M. Hilbe,et al.  Modeling Count Data , 2014, International Encyclopedia of Statistical Science.

[20]  S. Lewis,et al.  Regression analysis , 2007, Practical Neurology.

[21]  T. Yee The VGAM Package for Categorical Data Analysis , 2010 .

[22]  Peter K. Dunn,et al.  Randomized Quantile Residuals , 1996 .

[23]  Victor H. Lachos,et al.  On estimation and influence diagnostics for zero-inflated negative binomial regression models , 2011, Comput. Stat. Data Anal..

[24]  Silvia L. P. Ferrari,et al.  Improved likelihood inference for the shape parameter in Weibull regression , 2008 .

[25]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[26]  OspinaRaydonal,et al.  A general class of zero-or-one inflated beta regression models , 2012 .

[27]  J. T. Wulu,et al.  Regression analysis of count data , 2002 .

[28]  Nicholas J Ashbolt,et al.  Methods for assessing long-term mean pathogen count in drinking water and risk management implications. , 2012, Journal of water and health.

[29]  H. Masuda,et al.  A new defect distribution metrology with a consistent discrete exponential formula and its applications , 1998 .

[30]  T. Nakagawa,et al.  The Discrete Weibull Distribution , 1975, IEEE Transactions on Reliability.