Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.

This Review is focused on ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy-storage systems. Properties of the migrating species significantly affecting diffusion, including the valency and ionic radius, are discussed. The natures of the ligand and metal composing the skeleton of the host framework are analyzed and shown to have large impacts on the performance of solid-state electrolytes. A comprehensive identification of the candidate migrating species and structures is carried out. Not only the bulk properties of the conductors are explored, but the concept of tuning the conductivity through interfacial effects-specifically controlling grain boundaries and strain at the interfaces-is introduced. High-frequency dielectric constants and frequencies of low-energy optical phonons are shown as examples of properties that correlate with activation energy across many classes of ionic conductors. Experimental studies and theoretical results are discussed in parallel to give a pathway for further improvement of solid-state electrolytes. Through this discussion, the present Review aims to provide insight into the physical parameters affecting the diffusion process, to allow for more efficient and target-oriented research on improving solid-state ion conductors.

[1]  Biyi Xu,et al.  Multistep sintering to synthesize fast lithium garnets , 2016 .

[2]  Dong‐Won Kim,et al.  Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety , 2015 .

[3]  K. Tadanaga,et al.  Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries , 2015 .

[4]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[5]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[6]  Anubhav Jain,et al.  Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures , 2015 .

[7]  Stefania Ferrari,et al.  Latest advances in the manufacturing of 3D rechargeable lithium microbatteries , 2015 .

[8]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[9]  V. Roddatis,et al.  Microstructure and ionic conductivity of LLTO thin films: Influence of different substrates and excess lithium in the target , 2015 .

[10]  Jie Wei,et al.  Epitaxial Strain-Controlled Ionic Conductivity in Li-Ion Solid Electrolyte Li0.33La0.56TiO3 Thin Films , 2015 .

[11]  A. Kuwabara,et al.  Domain boundaries and their influence on Li migration in solid-state electrolyte (La,Li)TiO3 , 2015 .

[12]  A. Chroneos,et al.  Electronic Supplementary Information Genetics of Superionic Conductivity in Lithium Lanthanum Titanates , 2014 .

[13]  Ste,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li 4 SiO 4 − Li 3 PO 4 Solid Electrolytes , 2015 .

[14]  M. Hirayama,et al.  Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−xMx)P2S12 (M = Si, Sn) , 2014 .

[15]  M. Dollé,et al.  Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics , 2014 .

[16]  F. Krebs,et al.  From the Bottom Up – Flexible Solid State Electrochromic Devices , 2014, Advanced materials.

[17]  H. Chung,et al.  Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)(3) by adding excess lithium , 2014 .

[18]  G. F. Ortiz,et al.  Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping , 2014 .

[19]  Kota Suzuki,et al.  Hetero-epitaxial growth of Li0.17La0.61TiO3 solid electrolyte on LiMn2O4 electrode for all solid-state batteries , 2014 .

[20]  R. P. Rao,et al.  High capacity all-solid-state Cu–Li2S/Li6PS5Br/In batteries , 2014 .

[21]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[22]  M. Tribus,et al.  A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7—3xGaxLa3Zr2O12 with x = 0.08 to 0.84. , 2014 .

[23]  Zhuobin Li,et al.  Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..

[24]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[25]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[26]  C. Bernuy-López,et al.  Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics , 2014 .

[27]  M. Tribus,et al.  A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7–3xGaxLa3 Zr2O12 with x = 0.08 to 0.84 , 2014, Inorganic chemistry.

[28]  Wenqing Zhang,et al.  Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis , 2014 .

[29]  J. Janek,et al.  Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition , 2014 .

[30]  Bibin John,et al.  Lithium titanate as anode material for lithium-ion cells: a review , 2014, Ionics.

[31]  B. Yildiz “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion , 2014 .

[32]  C. Ouyang,et al.  Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations , 2014 .

[33]  Takeshi Kobayashi,et al.  Low temperature synthesis and ionic conductivity of the epitaxial Li0.17La0.61TiO3 film electrolyte , 2014 .

[34]  K. Miwa,et al.  A novel inorganic solid state ion conductor for rechargeable Mg batteries. , 2014, Chemical communications.

[35]  Sehee Lee,et al.  Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor , 2014 .

[36]  R. Subban,et al.  Cr and V substituted LiSn2P3O12 solid electrolyte materials , 2013 .

[37]  B. Boukamp,et al.  Oxide interfaces with enhanced ion conductivity , 2013 .

[38]  M. J. Turner,et al.  Visualizing lithium-ion migration pathways in battery materials. , 2013, Chemistry.

[39]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[40]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[41]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[42]  M. Hoelzel,et al.  Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2-x)Al(x)(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K. , 2013, Inorganic chemistry.

[43]  Shyue Ping Ong,et al.  Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation , 2013 .

[44]  Jürgen Köhler,et al.  Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .

[45]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[46]  M. Wilkening,et al.  Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br , 2013 .

[47]  Dong Hun Kim,et al.  Li loss during the growth of (Li,La)TiO3 thin films by pulsed laser deposition , 2013 .

[48]  B. Scrosati,et al.  A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte , 2013 .

[49]  J. Hertz,et al.  Improved ionic conductivity in strained yttria-stabilized zirconia thin films , 2013 .

[50]  J. Janek,et al.  Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium , 2013 .

[51]  Hongjian Peng,et al.  Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol–gel process , 2013, Journal of Sol-Gel Science and Technology.

[52]  Haiping Wu,et al.  The strain effect on colossal oxygen ionic conductivity in nanoscale zirconia electrolytes: a first-principles-based study. , 2013, Physical chemistry chemical physics : PCCP.

[53]  G. Friedbacher,et al.  The relevance of interfaces for oxide ion transport in yttria stabilized zirconia (YSZ) thin films. , 2013, Physical chemistry chemical physics : PCCP.

[54]  J. Janek,et al.  Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers. , 2013, Physical chemistry chemical physics : PCCP.

[55]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[56]  R. P. Rao,et al.  Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction , 2013 .

[57]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[58]  J. L. Allena,et al.  High conductivity of dense tetragonal Li 7 La 3 Zr 2 O 12 , 2013 .

[59]  S. Ong,et al.  Superionic Conductor : A First Principles Investigation , 2013 .

[60]  K. Takada,et al.  Synthesis and orientation control of Li-ion conducting epitaxial Li0.33La0.56TiO3 solid electrolyte thin films by pulsed laser deposition , 2012 .

[61]  V. Roddatis,et al.  Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia-CeO2 heterointerfaces. , 2012, ACS nano.

[62]  Matthew Sale,et al.  Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method , 2012 .

[63]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[64]  E. Traversa,et al.  Ab initio investigation of defect formation at ZrO 2 -CeO 2 interfaces , 2012 .

[65]  J. Sakamoto,et al.  High conductivity of dense tetragonal Li7La3Zr2O12 , 2012 .

[66]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[67]  Christopher J. Orendorff,et al.  How Electrolytes Influence Battery Safety. , 2012 .

[68]  V. K. Peterson,et al.  Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes , 2012, Journal of Solid State Electrochemistry.

[69]  J. Maier,et al.  Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three‐Dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. , 2011 .

[70]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[71]  N. Holzwarth,et al.  Computer Modeling of Crystalline Electrolytes - Lithium Thiophosphates and Phosphates , 2011 .

[72]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[73]  S. Adams,et al.  Studies of lithium argyrodite solid electrolytes for all‐solid‐state batteries , 2011 .

[74]  Xin Guo Can we achieve significantly higher ionic conductivity in nanostructured zirconia , 2011 .

[75]  Kai Xie,et al.  Influence of sputtering pressure on the structure and ionic conductivity of thin film amorphous electrolyte , 2011 .

[76]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[77]  H. Wiemhöfer,et al.  Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study , 2011 .

[78]  N. Holzwarth,et al.  Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates , 2011 .

[79]  E. Cussen,et al.  A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12 , 2011 .

[80]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[81]  J. Maier,et al.  Mesoscopic charge carriers chemistry in nanocrystalline SrTiO3. , 2010, Angewandte Chemie.

[82]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[83]  J. Janek,et al.  On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ|Sc2O3 multilayers. , 2010, Physical chemistry chemical physics : PCCP.

[84]  E. Traversa,et al.  Ionic conductivity in oxide heterostructures: the role of interfaces , 2010, Science and technology of advanced materials.

[85]  Y. Haven The ionic conductivity of Li‐halide crystals , 2010 .

[86]  J. Maier,et al.  Li6PO5Br and Li6PO5Cl: The first Lithium-Oxide-Argyrodites , 2010 .

[87]  Li Lu,et al.  Lithium Storage Capability of Lithium Ion Conductor Li1.5Al0.5Ge1.5 (PO4)3. , 2010 .

[88]  H. Oguchi,et al.  Synthesis and Lithium Fast‐Ion Conductivity of a New Complex Hydride Li3(NH2)2I with Double‐Layered Structure. , 2010 .

[89]  J. Maier,et al.  Atomistic characterisation of Li+ mobility and conductivity in Li(7-x)PS(6-x)Ix argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy. , 2010, Chemistry.

[90]  E. Cussen,et al.  Structure and ionic conductivity in lithium garnets , 2010 .

[91]  H. Oguchi,et al.  Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6 , 2010 .

[92]  H. Oguchi,et al.  Synthesis and Lithium Fast-Ion Conductivity of a New Complex Hydride Li3(NH2)2I with Double-Layered Structure , 2010 .

[93]  S. Pennycook,et al.  Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. , 2010, Physical review letters.

[94]  Takashi Kishi,et al.  Imidazolium ionic liquids containing LiBOB electrolyte for lithium battery , 2010 .

[95]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[96]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[97]  X. P. Wang,et al.  Sol–gel synthesis and electrical properties of Li5La 3Ta 2O 12 lithium ionic conductors , 2010 .

[98]  V. Thangadurai,et al.  Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. , 2010, ACS applied materials & interfaces.

[99]  H. Hayakawa,et al.  Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-Related Type Structure. , 2009 .

[100]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[101]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[102]  郭向欣 Ionically Conducting Two-Dimensional Heterostructures , 2009 .

[103]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[104]  J. Janek,et al.  Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies. , 2009, Physical chemistry chemical physics : PCCP.

[105]  W. Weppner SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | All-Solid State Battery , 2009 .

[106]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[107]  S. Tobishima,et al.  SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Thermal Runaway , 2009 .

[108]  K. Takada SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Electrolytes: Solid Oxide , 2009 .

[109]  E. Bedel Relationship between , 2009 .

[110]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[111]  J. Janek,et al.  Ionic conductivity and activation energy for oxygen ion transport in superlattices--the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. , 2008, Physical chemistry chemical physics : PCCP.

[112]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[113]  Changrong Zhou,et al.  Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics , 2008 .

[114]  M. Armand,et al.  Building better batteries , 2008, Nature.

[115]  J. Kawamura,et al.  Enhanced lithium ion conduction and the size effect on interfacial phase in Li2ZnI4-mesoporous alumina composite electrolyte , 2008 .

[116]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[117]  J. Maier Size effects on mass transport and storage in lithium batteries , 2007 .

[118]  N. Holzwarth,et al.  Mechanisms ofLi+diffusion in crystallineγ- andβ−Li3PO4electrolytes from first principles , 2007 .

[119]  N. Holzwarth,et al.  Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li3PO4 , 2007 .

[120]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[121]  K. Arbi,et al.  Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−x Zrx(PO4)3 materials followed by NMR and impedance spectroscopy , 2007 .

[122]  折茂 慎一 Lithium superionic conduction in lithium borohydride accompanied by structural transition , 2007 .

[123]  V. Thangadurai,et al.  Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). , 2007, Angewandte Chemie.

[124]  T. Hahn International Tables for Crystallography: Space-group symmetry , 2006 .

[125]  Stefan Adams,et al.  Bond valence analysis of structure-property relationships in solid electrolytes , 2006 .

[126]  G. Chen,et al.  Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu) , 2006 .

[127]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[128]  K. Arbi,et al.  Non-Arrhenius conductivity in the fast lithium conductorLi1.2Ti1.8Al0.2(PO4)3: ALi7NMR and electric impedance study , 2005 .

[129]  V. Thangadurai,et al.  Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet-Like Structure , 2005 .

[130]  K. Kanamura Electrolytes for lithium batteries , 2005 .

[131]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[132]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[133]  Patrick Judeinstein,et al.  NMR multi-scale description of ionic conductivity mechanisms inside polymer electrolytes , 2005 .

[134]  J. Maier,et al.  Finite‐Element Calculations on the Impedance of Electroceramics with Highly Resistive Grain Boundaries: I, Laterally Inhomogeneous Grain Boundaries , 2004 .

[135]  Takashi Sato,et al.  Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite , 2004 .

[136]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[137]  S. Hull Superionics: crystal structures and conduction processes , 2004 .

[138]  V. Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[139]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[140]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[141]  Sangtae Kim,et al.  On the conductivity mechanism of nanocrystalline ceria , 2002 .

[142]  S. Ito,et al.  Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system , 2002 .

[143]  S. Adams,et al.  Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses , 2002 .

[144]  E. Morán,et al.  A New La2/3LixTi1-xAlxO3 Solid Solution: Structure, Microstructure, and Li+ Conductivity , 2002 .

[145]  G. Adachi,et al.  Ionic conducting lanthanide oxides. , 2002, Chemical reviews.

[146]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[147]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON. The Li2S-GeS2-P2S5 System. , 2001 .

[148]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[149]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[150]  Xin Guo,et al.  Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis , 2001 .

[151]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[152]  Harry L. Tuller,et al.  Ionic conduction in nanocrystalline materials , 2000 .

[153]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[154]  Adams,et al.  Determining ionic conductivity from structural models of fast ionic conductors , 2000, Physical review letters.

[155]  V. Thangadurai,et al.  Effect of B-site substitution of (Li,La)TiO3 perovskites by di-, tri-, tetra- and hexavalent metal ions on the lithium ion conductivity , 2000 .

[156]  P. Fabry,et al.  Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV (PO4)3 with AIV=Ti or Ge and 0≤x≤0·7 for use as Li+ sensitive membranes , 1999 .

[157]  V. Thangadurai,et al.  LiSr1.656t0.35M11.3M 21.7O9 (M1: Ti, Zr; M2: Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure. , 1999 .

[158]  V. Thangadurai,et al.  LiSr1.650.35B1.3B‘1.7O9 (B = Ti, Zr; B‘ = Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure† , 1999 .

[159]  V. Thangadurai,et al.  New lithium-ion conductors based on the NASICON structure , 1999 .

[160]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[161]  J. Maier,et al.  A Finite Element Study on the Grain Boundary Impedance of Different Microstructures , 1998 .

[162]  H. Kawai,et al.  Lithium ion conductivity of polycrystalline perovskite La0.67−xLi3xTiO3 with ordered and disordered arrangements of the A-site ions , 1998 .

[163]  K. Wakamura Effects of electronic band on activation energy and of effective charge on lattice distortion in superionic conductors , 1998 .

[164]  Carlos Pecharromán,et al.  Relationship between Activation Energy and Bottleneck Size for Li+ Ion Conduction in NASICON Materials of Composition LiMM‘(PO4)3; M, M‘ = Ge, Ti, Sn, Hf , 1998 .

[165]  K. Wakamura ROLES OF PHONON AMPLITUDE AND LOW-ENERGY OPTICAL PHONONS ON SUPERIONIC CONDUCTION , 1997 .

[166]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[167]  O. Bohnké,et al.  Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate , 1996 .

[168]  R. Tarneberg Ion diffusion in the high-temperature phases Li2SO4, LiNaSO4, LiAgSO4 and Li4Zn(SO4)3 , 1996 .

[169]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[170]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[171]  H. Kawai,et al.  Lithium Ion Conductivity of A‐Site Deficient Perovskite Solid Solution La0.67‐xLi3xTiO3. , 1994 .

[172]  N. Yamazoe,et al.  Environmental gas sensing , 1994 .

[173]  Liquan Chen,et al.  Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .

[174]  Liquan Chen,et al.  High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .

[175]  Y. Sadaoka,et al.  The Electrical Properties of Ceramic Electrolytes for LiMxTi2-x(PO4)3 + yLi2O, M: Ge, Sn, Hf, and Zr Systems. , 1993 .

[176]  Y. Sadaoka,et al.  The Electrical Properties of Ceramic Electrolytes for LiM x Ti2 − x ( PO 4 ) 3 + yLi2 O , M = Ge , Sn , Hf , and Zr Systems , 1993 .

[177]  H. Lutz,et al.  Fast ionic conductivity of ternary iodides in the systems LiIMIII2 (MIIMn, Cd, Pb) , 1993 .

[178]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[179]  H. D. Lutz,et al.  Neue Halogenozinkate(II) M2IZnX4 (MI=Li, Na; X=Cl, Br) mit Olivinstruktur , 1993 .

[180]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[181]  N. Minh Ceramic Fuel Cells , 1993 .

[182]  A. Kuhn,et al.  Comparative determination of effective transport numbers in solid lithium electrolytes , 1993 .

[183]  A. Manthiram,et al.  Oxide-Ion Electrolytes , 1992 .

[184]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. , 1990 .

[185]  W. Schnick,et al.  Lithium ion conductivity of LiPN2 and Li7PN4 , 1990 .

[186]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[187]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[188]  H. D. Lutz,et al.  Li2ZnI4, das erste Iodid mit Olivinstruktur / Li2ZnI4, the First Olivine Type Iodide , 1989 .

[189]  C. Herzig,et al.  On the correlation between self-diffusion and the low-frequency LA ⅔⟨111⟩ phonon mode in b.c.c. metals , 1988 .

[190]  P. Bruce,et al.  Conductivity and transference number measurements on polymer electrolytes , 1988 .

[191]  H. Lutz,et al.  Ionic motion of tetrahedrally and octahedrally coordinated lithium ions in ternary and quaternary halides , 1988 .

[192]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[193]  S. Kikkawa,et al.  Preparation of lithium silicon nitrides and their lithium ion conductivity , 1987 .

[194]  H. Lutz,et al.  Ionic Conductivity, Structural, IR and Raman Spectroscopic Data of Olivine, Sr2PbO4, and Na2CuF4 Type Lithium and Sodium Chlorides Li2ZnCl4 and Na2MCl4 (M = Mg, Ti, Cr, Mn, Co, Zn, Cd) , 1987 .

[195]  P. Bruce,et al.  Steady state current flow in solid binary electrolyte cells , 1987 .

[196]  J. Maier Defect chemistry and ionic conductivity in thin films , 1987 .

[197]  A. Clearfield,et al.  Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf) , 1986 .

[198]  A. West,et al.  Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4 , 1985 .

[199]  H. S. Maiti,et al.  Lithium Ion Conductivity in the System Li4SiO4-Li3VO4 , 1985 .

[200]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[201]  A. West,et al.  Li+ ion conductivity in the system Li4SiO4Li3VO4 , 1984 .

[202]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[203]  A. West,et al.  New Li+ ion conductors in the system Li4SiO4−Li3AsO4 , 1982 .

[204]  J. Souquet Ionic Transport in Amorphous Solid Electrolytes , 1981 .

[205]  S. Hackwood,et al.  Physical techniques for the study of solid electrolytes , 1981 .

[206]  A. Burggraaf,et al.  Grain boundary effects on ionic conductivity in ceramic GdxZr1–xO2–(x/2) solid solutions , 1981 .

[207]  W. Schmidt,et al.  Chloride spinels: A new group of solid lithium electrolytes , 1981 .

[208]  R. Buck Transfort properties of ionic conductors , 1981 .

[209]  K. Wapenaar,et al.  Solid electrolyte properties of LaF3 , 1980 .

[210]  G. Farrington,et al.  Ionic conductivity in Na+, K+, and Ag+ β″-alumina , 1980 .

[211]  H. Bilz,et al.  Phonon Dispersion Relations in Insulators , 1979 .

[212]  B. Boukamp,et al.  Ionic conductivity in lithium imide , 1979 .

[213]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[214]  B. Boukamp,et al.  Fast ionic conductivity in lithium nitride , 1978 .

[215]  R. Huggins,et al.  Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions , 1977 .

[216]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[217]  J. Schoonman,et al.  The Ionic Conductivity of Beta Lead Fluoride , 1977 .

[218]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[219]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[220]  J. P. Remeika,et al.  Ion-Ion Correlations and Diffusion in β-Alumina , 1975 .

[221]  A. West Crystal chemistry of some tetrahedral oxides , 1975 .

[222]  C. Liang Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .

[223]  J. Kummer β-Alumina electrolytes , 1972 .

[224]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .

[225]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[226]  J. N. Bradley,et al.  Solids with high ionic conductivity in group 1 halide systems , 1967 .

[227]  D. Strickler,et al.  Ionic Conductivity of Cubic Solid Solutions in the System CaO—Y2O3—ZrO2 , 1964 .

[228]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[229]  C. Wagner,et al.  Electrical Conductivity Measurements on Cuprous Halides , 1957 .

[230]  M. H. Hebb Electrical Conductivity of Silver Sulfide , 1952 .

[231]  C. Tubandt,et al.  Über Elektrizitätsleitung in festen kristallisierten Verbindungen. Dritte Mitteilung. Über das elektrische Leitvermögen des Schwefelsilbers und Kupfersulfürs , 1921 .

[232]  C. Tubandt Über Elektrizitätsleitung in festen kristallisierten Verbindungen. Zweite Mitteilung. Überführung und Wanderung der Ionen in einheitlichen festen Elektrolyten , 1921 .

[233]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.