Interpreting and reporting 40Ar/39Ar geochronologic data

The 40Ar/39Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing 40Ar/39Ar dates with analytical uncertainties of ∼0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of 40Ar/39Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting 40Ar/39Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of 40Ar/39Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity.

[1]  K. Kuiper,et al.  Corrigendum to “Astronomical calibration of 40Ar/39Ar reference minerals using high precision, multi-collector (ARGUSVI) mass spectrometry” [Geochim. Cosmochim. Acta 196 (2017) 351–369] , 2020 .

[2]  E. Kirby,et al.  Resolving time-space histories of Late Cenozoic bedrock incision along the Upper Colorado River, USA , 2019 .

[3]  A. Koppers,et al.  Simplifying Age Progressions within the Cook‐Austral Islands using ARGUS‐VI High‐Resolution 40Ar/39Ar Incremental Heating Ages , 2019, Geochemistry, Geophysics, Geosystems.

[4]  G. Sottili,et al.  Combined glacio-eustatic forcing and volcano-tectonic uplift: Geomorphological and geochronological constraints on the Tiber River terraces in the eastern Vulsini Volcanic District (central Italy) , 2019, Global and Planetary Change.

[5]  K. Hodges,et al.  Characterization of the rhyolite of Bodie Hills and 40Ar/39Ar intercalibration with Ar mineral standards , 2019, Chemical Geology.

[6]  P. Vasconcelos,et al.  Argon diffusion in hypogene and supergene alunites: Implications to geochronology and thermochronometry on Earth and Mars , 2019, Geochimica et Cosmochimica Acta.

[7]  John W. Williams,et al.  SPARROW: A DATA MANAGEMENT SYSTEM AND CYBERINFRASTRUCTURE COMPONENT TARGETED AT GEOCHRONOLOGY LABORATORIES , 2019 .

[8]  P. Renne,et al.  Boutique neutrons advance 40Ar/39Ar geochronology , 2019, Science Advances.

[9]  P. Vasconcelos,et al.  Quantifying 39Ar recoil in natural hypogene and supergene alunites and jarosites , 2019, Geochimica et Cosmochimica Acta.

[10]  S. Kelley,et al.  Recycling of heavy noble gases by subduction of serpentinite , 2019, Earth and Planetary Science Letters.

[11]  A. Koppers,et al.  High‐Resolution 40Ar/39Ar Geochronology of the Louisville Seamounts IODP Expedition 330 Drill Sites: Implications for the Duration of Hot Spot‐related Volcanism and Age Progressions , 2019, Geochemistry, Geophysics, Geosystems.

[12]  Xuan‐Ce Wang,et al.  Pyroxene 40Ar/39Ar Dating of Basalt and Applications to Large Igneous Provinces and Precambrian Stratigraphic Correlations , 2019, Journal of Geophysical Research: Solid Earth.

[13]  Heng Chen,et al.  Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite , 2019, Chemical Geology.

[14]  S. Hubbard,et al.  Assessment of widely used methods to derive depositional ages from detrital zircon populations , 2019, Geoscience Frontiers.

[15]  D. Phillips,et al.  Provenance of Cape Supergroup sediments and timing of Cape Fold Belt orogenesis: Constraints from high-precision 40Ar/39Ar dating of muscovite , 2019, Gondwana Research.

[16]  S. Roeske,et al.  A river runs through it both ways across time: 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range , 2019, Geosphere.

[17]  K. Karlstrom,et al.  Birth and evolution of the Virgin River fluvial system: ∼1 km of post–5 Ma uplift of the western Colorado Plateau , 2019, Geosphere.

[18]  K. Kuiper,et al.  Improving the precision of single grain mica 40Ar/39Ar-dating on smaller and younger muscovite grains: Application to provenance studies , 2019, Chemical Geology.

[19]  Man Liu,et al.  Gas release systematics of mineral-hosted fluid inclusions during stepwise crushing: implications for 40Ar/39Ar geochronology of hydrothermal fluids , 2019, Geochimica et Cosmochimica Acta.

[20]  M. Raymo,et al.  K isotopes as a tracer for continental weathering and geological K cycling , 2019, Proceedings of the National Academy of Sciences.

[21]  C. Clark,et al.  Closed system behaviour of argon in osumilite records protracted high‐T metamorphism within the Rogaland–Vest Agder Sector, Norway , 2019, Journal of Metamorphic Geology.

[22]  P. Zeitler,et al.  Reconstructing deep‐time histories from integrated thermochronology: An example from southern Baffin Island, Canada , 2019, Terra Nova.

[23]  D. Barfod,et al.  Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan , 2019, GSA Bulletin.

[24]  S. Greenland,et al.  Scientists rise up against statistical significance , 2019, Nature.

[25]  K. Konrad,et al.  Dating Clinopyroxene Phenocrysts in Submarine Basalts Using 40Ar/39Ar Geochronology , 2019, Geochemistry, Geophysics, Geosystems.

[26]  B. Jolliff,et al.  Exploring the variability of argon loss in Apollo 17 impact melt rock 77135 using high‐spatial resolution 40Ar/39Ar geochronology , 2019, Meteoritics & Planetary Science.

[27]  Announcement: FAIR data in Earth science , 2019, Nature.

[28]  B. Jicha,et al.  Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal , 2018, Science Advances.

[29]  P. Reiners,et al.  Rapid Oligocene to Early Miocene Extension Along the Grant Range Detachment System, Nevada, USA: Insights From Multipart Cooling Histories of Footwall Rocks , 2018, Tectonics.

[30]  B. Singer,et al.  Textural and Mineralogical Record of Low-pressure Melt Extraction and Silicic Cumulate Formation in the Late Miocene Risco Bayo–Huemul Plutonic Complex, Southern Andes , 2018, Journal of Petrology.

[31]  M. Heath,et al.  An evidence-based approach to accurate interpretation of 40Ar/39Ar ages from basaltic rocks , 2018, Earth and Planetary Science Letters.

[32]  P. Renne,et al.  Calibration of chron C29r: New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana , 2018 .

[33]  C. Davids,et al.  Direct 40Ar/39Ar K‐feldspar dating of Late Permian—Early Triassic brittle faulting in northern Norway , 2018 .

[34]  D. Phillips,et al.  40Ar/39Ar ages of alkali feldspar xenocrysts constrain the timing of intraplate basaltic volcanism , 2018, Quaternary Geochronology.

[35]  D. Peppe,et al.  Revised age constraints for Late Cretaceous to early Paleocene terrestrial strata from the Dawson Creek section, Big Bend National Park, west Texas , 2018 .

[36]  M. Heizler,et al.  Eocene-Oligocene chronostratigraphy of ignimbrite flareup volcanic ash beds on the Gulf of Mexico coastal plains , 2018 .

[37]  F. Jourdan,et al.  ​40Ar/39Ar geochronology of terrestrial pyroxene , 2018, Geochimica et Cosmochimica Acta.

[38]  M. Schmitz,et al.  Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States , 2018 .

[39]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[40]  S. Peters,et al.  Macrostrat: A Platform for Geological Data Integration and Deep‐Time Earth Crust Research , 2018 .

[41]  H. Harbi,et al.  U-Pb zircon and 40Ar/39Ar geochronology of sericite from hydrothermal alteration zones: new constraints for the timing of Ediacaran gold mineralization in the Sukhaybarat area, western Afif terrane, Saudi Arabia , 2018, Mineralium Deposita.

[42]  D. Peppe,et al.  High-resolution magnetostratigraphy of the Upper Nacimiento Formation, San Juan Basin, New Mexico, USA: Implications for basin evolution and mammalian turnover , 2018, American Journal of Science.

[43]  R. Ellam,et al.  High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K , 2018 .

[44]  S. Kelley,et al.  Recycling Argon through Metamorphic Reactions: the Record in Symplectites , 2018 .

[45]  P. Zeitler,et al.  Characterization of helium release from apatite by continuous ramped heating , 2018 .

[46]  G. Giordano,et al.  Reappraisal of Los Humeros Volcanic Complex by New U/Th Zircon and 40Ar/39Ar Dating: Implications for Greater Geothermal Potential , 2018 .

[47]  R. Carlson,et al.  Geochronology and Thermochronology , 2017 .

[48]  K. Hodges,et al.  Helium Diffusion in Natural Xenotime , 2017, Geochemistry, Geophysics, Geosystems.

[49]  W. Hildreth,et al.  Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage , 2017, Proceedings of the National Academy of Sciences.

[50]  S. Hemming,et al.  Glacial erosion of East Antarctica in the Pliocene: A comparative study of multiple marine sediment provenance tracers , 2017 .

[51]  B. Singer,et al.  Complementary crystal accumulation and rhyolite melt segregation in a late Miocene Andean pluton , 2017 .

[52]  D. Schneider,et al.  Deciphering the Paleoproterozoic cooling history of the northeastern Trans-Hudson Orogen, Baffin Island (Canada), using 40 Ar/ 39 Ar step-heating and UV laser thermochronology , 2017 .

[53]  G. Gehrels,et al.  The syn-orogenic sedimentary record of the Grenville Orogeny in southwest Laurentia , 2017 .

[54]  A. Kent,et al.  Split-grain 40Ar/39Ar dating: Integrating temporal and geochemical data from crystal cargoes , 2017 .

[55]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[56]  S. Hemming,et al.  Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications , 2017 .

[57]  P. Renne,et al.  High-precision 40Ar/39Ar dating of Pleistocene Tuffs and temporal anchoring of the Matuyama-Brunhes Boundary , 2017 .

[58]  D. Richards,et al.  Data reporting standards for publication of U-series data for geochronology and timescale assessment in the earth sciences , 2017 .

[59]  P. Renne,et al.  Intercalibration and age of the Alder Creek sanidine 40Ar/39Ar standard , 2017 .

[60]  R. Hereford,et al.  Cenozoic incision history of the Little Colorado River: Its role in carving Grand Canyon and onset of rapid incision in the past ca. 2 Ma in the Colorado River System , 2017 .

[61]  S. Kelley,et al.  Argon redistribution during a metamorphic cycle: Consequences for determining cooling rates , 2016 .

[62]  K. Hodges,et al.  ArAR — A software tool to promote the robust comparison of K–Ar and 40Ar/39Ar dates published using different decay, isotopic, and monitor-age parameters , 2016 .

[63]  M. Schmitz,et al.  Zircon Petrochronology and 40Ar/39Ar Sanidine Dates for the Mesa Falls Tuff: Crystal-scale Records of Magmatic Evolution and the Short Lifespan of a Large Yellowstone Magma Chamber , 2016 .

[64]  J. Bowring,et al.  Community‐Derived Standards for LA‐ICP‐MS U‐(Th‐)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting , 2016 .

[65]  L. Borg,et al.  A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of Martian meteorites , 2016 .

[66]  P. Sobol,et al.  Re-evaluation of the ages of 40 Ar/ 39 Ar sanidine standards and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer , 2016 .

[67]  M. Cosca,et al.  Tracking the timing of subduction and exhumation using 40Ar/39Ar phengite ages in blueschist- and eclogite-facies rocks (Sivrihisar, Turkey) , 2016, Contributions to Mineralogy and Petrology.

[68]  R. Hereford,et al.  Reevaluation of the Crooked Ridge River—Early Pleistocene (ca. 2 Ma) age and origin of the White Mesa alluvium, northeastern Arizona , 2016 .

[69]  P. Clark,et al.  Identification of the short-lived Santa Rosa geomagnetic excursion in lavas on Floreana Island (Galapagos) by 40Ar/39Ar geochronology , 2016 .

[70]  N. Lazar,et al.  The ASA Statement on p-Values: Context, Process, and Purpose , 2016 .

[71]  S. Jacobsen,et al.  An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts , 2016 .

[72]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[73]  S. Kay,et al.  Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc , 2016 .

[74]  P. Vermeesch Revised error propagation of 40 Ar/ 39 Ar data, including covariances , 2015 .

[75]  K. Cooper,et al.  Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry , 2015 .

[76]  S. Kelley,et al.  Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling , 2015 .

[77]  P. Renne,et al.  High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana , 2015 .

[78]  B. Jolliff,et al.  Refining lunar impact chronology through high spatial resolution 40Ar/39Ar dating of impact melts , 2015, Science Advances.

[79]  S. Unterricker,et al.  Radial fast‐neutron fluence gradients during rotating 40Ar/39Ar sample irradiation recorded with metallic fluence monitors and geological age standards , 2015 .

[80]  R. Fleck,et al.  40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA , 2014 .

[81]  T. Williams,et al.  A comparison of detrital U–Pb zircon, 40Ar/39Ar hornblende, 40Ar/39Ar biotite ages in marine sediments off East Antarctica: Implications for the geology of subglacial terrains and provenance studies , 2014 .

[82]  D. Phillips,et al.  High precision multi-collector 40Ar/39Ar dating of young basalts: Mount Rouse volcano (SE Australia) revisited , 2014 .

[83]  Tiffani L. Williams,et al.  Sea surface temperature control on the distribution of far‐traveled Southern Ocean ice‐rafted detritus during the Pliocene , 2014 .

[84]  C. Vérati,et al.  Advances in 40Ar/39Ar dating: from archaeology to planetary sciences – introduction , 2014 .

[85]  D. Phillips,et al.  Ultra-high precision 40Ar/39Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: New dating standards required? , 2013 .

[86]  N. Clauer The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals , 2013 .

[87]  C. Vérati,et al.  Modelling effect of sericitization of plagioclase on the 40K/40Ar and 40Ar/39Ar chronometers: implication for dating basaltic rocks and mineral deposits , 2013 .

[88]  P. Renne,et al.  Systematic variations of argon diffusion in feldspars and implications for thermochronometry , 2013 .

[89]  P. Layer,et al.  Persistent long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology , 2013 .

[90]  J. Cottle,et al.  Laser-ablation split-stream ICP petrochronology , 2013 .

[91]  M. Storey,et al.  Age intercalibration of 40Ar/39Ar sanidine and chemically distinct U/Pb zircon populations from the Alder Creek Rhyolite Quaternary geochronology standard , 2013 .

[92]  C. Hall Direct measurement of recoil effects on 40Ar/39Ar standards , 2013 .

[93]  T. Harrison,et al.  The multi-diffusion domain model: past, present and future , 2013 .

[94]  P. Renne,et al.  Time Scales of Critical Events around the Cretaceous-paleogene Boundary , 2022 .

[95]  I. Villa,et al.  K-feldspar hygrochronology , 2013 .

[96]  S. Flude,et al.  Observation of centimetre-scale argon diffusion in alkali feldspars: implications for 40Ar/39Ar thermochronology , 2013 .

[97]  T. Ireland Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry. , 2013, The Review of scientific instruments.

[98]  S. Kelley,et al.  Metamorphic rocks seek meaningful cooling rate: Interpreting 40Ar/39Ar ages in an exhumed ultra-high pressure terrane , 2012 .

[99]  N. Clauer,et al.  Comparative 40Ar/39Ar and K–Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences , 2012 .

[100]  S. Kelley,et al.  Retention of inherited Ar by alkali feldspar xenocrysts in a magma: Kinetic constraints from Ba zoning profiles , 2012 .

[101]  T. Spell,et al.  Recovery of muscovite age gradients by 40Ar/39Ar vacuum furnace step-heating analysis , 2012 .

[102]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[103]  S. Kelley,et al.  When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? , 2012 .

[104]  M. Cosca,et al.  40Ar∗ loss in experimentally deformed muscovite and biotite with implications for 40Ar/39Ar geochronology of naturally deformed rocks , 2011 .

[105]  Finlay M. Stuart,et al.  New high-precision measurements of the isotopic composition of atmospheric argon , 2011 .

[106]  S. Goldstein,et al.  Characterizing the sediment provenance of East Antarctica's weak underbelly: The Aurora and Wilkes sub‐glacial basins , 2011 .

[107]  M. Storey,et al.  A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine , 2011 .

[108]  M. Grove,et al.  Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas , 2011 .

[109]  S. Baldwin,et al.  Jarosite, argon diffusion, and dating aqueous mineralization on Earth and Mars , 2011 .

[110]  P. Renne,et al.  Response to the comment by W.H. Schwarz et al. on Joint determination of 40K decay constants and 40 , 2011 .

[111]  S. Kelley,et al.  Interpreting high-pressure phengite 40Ar/39Ar laserprobe ages: an example from Saih Hatat, NE Oman , 2011 .

[112]  K. Hodges,et al.  Laser depth profiling studies of helium diffusion in Durango fluorapatite , 2011 .

[113]  P. Renne,et al.  Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing , 2011 .

[114]  P. Fitzgerald,et al.  Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range , 2011 .

[115]  S. Bowring,et al.  U-Pb thermochronology: creating a temporal record of lithosphere thermal evolution , 2011 .

[116]  D. Günther,et al.  A new method integrating high-precision U–Pb geochronology with zircon trace element analysis (U–Pb TIMS-TEA) , 2010 .

[117]  B. Weiss,et al.  Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites , 2010 .

[118]  P. Renne,et al.  Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology , 2010 .

[119]  C. Swisher,et al.  Mass discrimination monitoring and intercalibration of dual collectors in noble gas mass spectrometer systems , 2010 .

[120]  Junzhang Zhu,et al.  Dating petroleum emplacement by illite 40Ar/39Ar laser stepwise heating , 2010 .

[121]  M. D. Podesta,et al.  Preparation of argon Primary Measurement Standards for the calibration of ion current ratios measured in argon , 2010 .

[122]  S. Goldstein,et al.  Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene , 2010 .

[123]  K. Hodges,et al.  Data reporting norms for 40Ar/39Ar geochronology , 2009 .

[124]  Finlay M. Stuart,et al.  The ARGUS multicollector noble gas mass spectrometer: Performance for 40Ar/39Ar geochronology , 2009 .

[125]  Bryn Nelson Data sharing: Empty archives , 2009, Nature.

[126]  G. Woldegabriel,et al.  Archaeological age constraints from extrusion ages of obsidian: Examples from the Middle Awash, Ethiopia , 2009 .

[127]  T. Harrison,et al.  Diffusion of 40Ar in muscovite , 2009 .

[128]  P. Bryan Heidorn,et al.  Shedding Light on the Dark Data in the Long Tail of Science , 2008, Libr. Trends.

[129]  Jean-Claude Sibuet,et al.  Spatial aftershock distribution of the 26 December 2004 great Sumatra‐Andaman earthquake in the northern Sumatra area , 2008 .

[130]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[131]  S. Haines,et al.  Clay quantification and Ar–Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico , 2008 .

[132]  S. Goldstein,et al.  40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean , 2007 .

[133]  J. Spray,et al.  Shock implantation of Martian atmospheric argon in four basaltic shergottites : A laser probe 40Ar/39Ar investigation , 2007 .

[134]  P. DeCelles,et al.  Tectonic evolution of the Himalaya constrained by detrital 40Ar–39Ar, Sm–Nd and petrographic data from the Siwalik foreland basin succession, SW Nepal , 2006 .

[135]  P. Renne,et al.  Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards , 2006 .

[136]  J. Severinghaus,et al.  A redetermination of the isotopic abundances of atmospheric Ar , 2006 .

[137]  P. Reiners,et al.  USING THERMOCHRONOLOGY TO UNDERSTAND OROGENIC EROSION , 2006 .

[138]  I. Villa From nanometer to megameter: Isotopes, atomic-scale processes, and continent-scale tectonic models , 2006 .

[139]  K. Hodges,et al.  Laser ablation 40Ar/39Ar dating of metamorphic fabrics in the Caledonides of north Ireland , 2006, Journal of the Geological Society.

[140]  S. Kelley,et al.  A high resolution record of multiple diagenetic events: Ultraviolet laser microprobe Ar/Ar analysis of zoned K-feldspar overgrowths , 2005 .

[141]  F. Bussy,et al.  Geochemistry and 40Ar/39Ar geochronology of pseudotachylyte associated with UHP whiteschists from the Dora Maira massif, Italy , 2005 .

[142]  A. Mulch,et al.  Time scales of deformation and exhumation in extensional detachment systems determined by high-spatial resolution in situ UV-laser 40Ar/39Ar dating , 2005 .

[143]  S. Kelley,et al.  Compositional controls on 40Ar/39Ar ages of zoned mica from a rare-element pegmatite , 2005 .

[144]  P. Renne,et al.  The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii , 2005 .

[145]  L. Snee,et al.  Evaluation of argon ages and integrity of fluid-inclusion compositions: Stepwise noble gas heating experiments on 1.87 Ga alunite from Tapajós Province, Brazil , 2005 .

[146]  J. Schumacher,et al.  Prograde mica 40Ar/39Ar growth ages recorded in high pressure rocks (Syros, Cyclades, Greece) , 2005 .

[147]  T. Spell,et al.  Cenozoic plate boundary evolution in the South Island of New Zealand: New thermochronological constraints , 2004 .

[148]  A. Mulch,et al.  Recrystallization or cooling ages: in situ UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks , 2004, Journal of the Geological Society.

[149]  J. Tiercelin,et al.  The Karoo triple junction questioned: evidence from Jurassic and Proterozoic 40Ar/39Ar ages and geochemistry of the giant Okavango dyke swarm (Botswana) , 2004 .

[150]  S. Hemming,et al.  Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint , 2004 .

[151]  G. Bertotti,et al.  Episodic exhumation in the Western Alps , 2003 .

[152]  J. Zalasiewicz,et al.  Precise dating of low-temperature deformation: Strain-fringe analysis by 40Ar-39Ar laser microprobe , 2003 .

[153]  S. Kelley,et al.  Dating fault-generated pseudotachylytes: comparison of 40Ar/39Ar stepwise-heating, laser-ablation and Rb–Sr microsampling analyses , 2002 .

[154]  S. Kelley Excess argon in K–Ar and Ar–Ar geochronology , 2002 .

[155]  Anthony A. P. Koppers,et al.  ArArCALC-software for 40 Ar/ 39 Ar age calculations , 2002 .

[156]  T. Harrison,et al.  Systematic analysis of K-feldspar 40 Ar/ 39 Ar step heating results II: relevance of laboratory argon diffusion properties to nature , 2002 .

[157]  M. Handy,et al.  In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite : an example of defect-enhanced argon loss , 2002 .

[158]  M. Cosca,et al.  Heterogeneous 40Ar* distributions in naturally deformed muscovite: in situ UV-laser ablation evidence for microstructurally controlled intragrain diffusion , 2001 .

[159]  P. Vrolijk,et al.  The dating of shallow faults in the Earth's crust , 2001, Nature.

[160]  P. Renne,et al.  Determination of the half-life of 37Ar by mass spectrometry , 2001 .

[161]  M. Cosca,et al.  Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia): P–T conditions and in situ40Ar/39Ar UV laser probe dating of metapelites , 2001 .

[162]  B. Singer,et al.  40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records , 2001 .

[163]  K. Hodges,et al.  Dating cleavage formation in slates and phyllites with the 40Ar/39Ar laser microprobe: an example from the western New England Appalachians, USA , 2000 .

[164]  S. Kesler,et al.  Overlapping Cretaceous and Eocene Alteration, Twin Creeks Carlin-Type Deposit, Nevada , 2000 .

[165]  J-A. Wartho,et al.  Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites , 2000, Science.

[166]  H. Staudigel,et al.  Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique , 2000 .

[167]  I. Parsons,et al.  40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture? , 1999 .

[168]  S. Kelley,et al.  Direct measurement of Ar diffusion profiles in a gem-quality Madagascar K-feldspar using the ultra-violet laser ablation microprobe (UVLAMP) , 1999 .

[169]  D. Garrison,et al.  Argon‐39‐argon‐40 “ages” and trapped argon in Martian shergottites, Chassigny, and Allan Hills 84001 , 1999 .

[170]  G. Ruffet,et al.  40Ar/39Ar dating of West African lateritic cryptomelanes , 1998 .

[171]  S. Nelson,et al.  Inherited argon in a Pleistocene andesite lava: 40Ar/39Ar incremental-heating and laser-fusion analyses of plagioclase , 1998 .

[172]  P. Provencio,et al.  Age and origin of carlsbad cavern and related caves from 40Ar/39Ar of alunite , 1998, Science.

[173]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[174]  S. Reddy,et al.  DETERMINATION OF HIGH SPATIAL RESOLUTION ARGON ISOTOPE VARIATIONS IN METAMORPHIC BIOTITES , 1997 .

[175]  P. Higueras,et al.  Dating of alteration episodes related to mercury mineralization in the Almadén district, Spain , 1997 .

[176]  D. York,et al.  The Edge of Time: Dating Young Volcanic Ash Layers with the 40Ar-39Ar Laser Probe , 1996, Science.

[177]  T. Harrison,et al.  40Ar* diffusion in Fe-rich biotite , 1996 .

[178]  G. Mahood,et al.  40Ar39Ar geochronology of rhyolites erupted following collapse of the Yellowstone caldera, Yellowstone Plateau volcanic field: implications for crustal contamination , 1996 .

[179]  K. Mahon The New “York” Regression: Application of an Improved Statistical Method to Geochemistry , 1996 .

[180]  B. Singer,et al.  Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from , 1996 .

[181]  A. Matsumoto,et al.  KAr age determination of late Quaternary volcanic rocks using the “mass fractionation correction procedure”: application to the Younger Ontake Volcano, central Japan , 1995 .

[182]  K. Hodges,et al.  thermochronology of isotopically zoned micas: Insights from the southwestern USA proterozoic orogen , 1995 .

[183]  H. Wenk,et al.  Mechanisms and kinetics of atmospheric, radiogenic, and nucleogenic argon release from cryptomelane during 40Ar 39Ar analysis , 1995 .

[184]  James K. W. Lee Multipath diffusion in geochronology , 1995 .

[185]  R. Clayton,et al.  Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils , 1995 .

[186]  G. W. Arnold,et al.  Recoil refinements: Implications for the 40Ar/39Ar dating technique , 1995 .

[187]  S. Kelley,et al.  High spatial resolution 40Ar 39Ar investigations using an ultra-violet laser probe extraction technique , 1994 .

[188]  K. Hodges,et al.  Laser 40Ar/39Ar Evaluation of Slow Cooling and Episodic Loss of 40Ar from a Sample of Polymetamorphic Muscovite , 1993, Science.

[189]  C. Swisher,et al.  40Ar/39Ar dating and magnetostratigraphic correlation of the terrestrial Cretaceous–Paleogene boundary and Puercan Mammal Age, Hell Creek – Tullock formations, eastern Montana , 1993 .

[190]  T. Harrison,et al.  Argon diffusion domains in K-feldspar II: kinetic properties of MH-10 , 1993 .

[191]  K. Foland,et al.  40Ar39Ar dating of very fine-grained samples: An encapsulated-vial procedure to overcome the problem of 39Ar recoil loss , 1992 .

[192]  P. Renne,et al.  Age and Duration of Weathering by 40K-40Ar and 40Ar/39Ar Analysis of Potassium-Manganese Oxides , 1992, Science.

[193]  A. Montanari,et al.  Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites , 1992, Science.

[194]  S. Kelley,et al.  Laser40Ar39Ar ages for individual detrital muscovites in the Southern Uplands of Scotland, U.K. , 1992 .

[195]  I. Wendt,et al.  The statistical distribution of the mean squared weighted deviation , 1992 .

[196]  S. Kelley,et al.  Laser probe40Ar39Ar measurements of loss profiles within individual hornblende grains from the Giants Range Granite, northern Minnesota, USA , 1991 .

[197]  T. Onstott,et al.  Incremental heating of hornblende in vacuo: implications for 40Ar/ 39Ar geochronology and the interpretation of thermal histories , 1991 .

[198]  T. Harrison,et al.  The heating duration and provenance age of rocks in the Salton Sea geothermal field, southern California , 1991 .

[199]  F. Richter,et al.  Diffusion Domains Determined by 39 Ar Released During Step Heating , 1991 .

[200]  R. Potts,et al.  Single-crystal 40Ar/39Ar dating of the Olorgesailie Formation , 1990 .

[201]  P. Renne,et al.  40Ar/39Ar laser-probe dating of detrital micas from the Montgomery Creek Formation, northern California:Clues to provenance, tectonics, and weathering processes , 1990 .

[202]  T. Harrison,et al.  Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan , 1990 .

[203]  F. Richter,et al.  The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes , 1989 .

[204]  P. Zeitler Argon diffusion in partially outgassed alkali feldspars: Insights from 40Ar39Ar analysis , 1988 .

[205]  K. Foland,et al.  On the significance of argon release from biotite and amphibole during 40Ar/39Ar vacuum heating , 1988 .

[206]  T. Onstott,et al.  Argon isotopic zoning in mantle phlogopite , 1988 .

[207]  T. Harrison,et al.  Multiple trapped argon isotope components revealed by 40AR39AR isochron analysis , 1988 .

[208]  P. Zeitler Argon diffusion in partially outgassed alkali feldspars: Insights from analysis , 1987 .

[209]  M. H. Dodson Closure Profiles in Cooling Systems , 1986 .

[210]  F. Brown,et al.  Low-temperature alteration of volcanic glass: Hydration, Na, K, 18O and Ar mobility , 1985 .

[211]  D. Bogard,et al.  Martian Gases in an Antarctic Meteorite? , 1983, Science.

[212]  T. Harrison,et al.  40Ar/39Ar age spectrum analysis of detrital microclines from the southern San Joaquin Basin, California: an approach to determining the thermal evolution of sedimentary basins , 1983 .

[213]  G. Wasserburg,et al.  39Ar recoil losses and presolar ages in Allende inclusions , 1983 .

[214]  D. York,et al.  40Ar/39Ar dating of terrestrial minerals with a continuous laser , 1981 .

[215]  J. Środoń Precise Identification of Illite/Smectite Interstratifications by X-Ray Powder Diffraction , 1980 .

[216]  G. B. Dalrymple Critical tables for conversion of K-Ar ages from old to new constants , 1979 .

[217]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[218]  G. B. Dalrymple,et al.  Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique , 1976 .

[219]  J. Huneke,et al.  The realities of recoil: 39 Ar recoil out of small grains and anomalous age patterns in 39 Ar- 40 Ar dating. , 1976 .

[220]  T. J. Murphy,et al.  Absolute Isotopic Abundance Ratio and the Atomic Weight of a Reference Sample of Copper. , 1975, Journal of Research of the National Bureau of Standards Section A Physics and Chemistry.

[221]  E. Alexander,et al.  40Ar-39Ar ages and trace element contents of Apollo 14 breccias; an interlaboratory cross-calibration of 40Ar-39Ar standards , 1974 .

[222]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[223]  G. Megrue Spatial distribution of 40Ar/39Ar ages in Lunar Breccia 14301 , 1973 .

[224]  N. Gale,et al.  A reappraisal of the decay constants and branching ratio of 40K , 1969 .

[225]  W. Compston,et al.  The statistical assessment of Rb‐Sr isochrons , 1966 .

[226]  Grenville Turner,et al.  Potassium‐argon dating by activation with fast neutrons , 1966 .

[227]  R. Stoenner,et al.  Half-Lives of Argon-37, Argon-39, and Argon-42 , 1965, Science.

[228]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[229]  A. Nier,et al.  A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium , 1950 .

[230]  Patricia M. Cisarik,et al.  A Comparison , 1913, Texas medical journal.

[231]  Geologic Time Scale 2020 , 2020 .

[232]  T. Nägler,et al.  Constraining the 40 K decay constant with 87 Rb- 87 Sr - 40 K- 40 Ca chronometer intercomparison , 2018 .

[233]  K. Kuiper,et al.  Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry , 2017 .

[234]  P. Landisa,et al.  Evaluation of argon ages and integrity of fluid-inclusion compositions: stepwise noble gas heating experiments on 1.87 Ga alunite from Tapajo ́ s Province, Brazil , 2017 .

[235]  F. Jourdan,et al.  Ar / 39 Ar Geochronology of Terrestrial Pyroxene , 2017 .

[236]  K. Hodges Thermochronology in Orogenic Systems , 2014 .

[237]  C. Vérati,et al.  Advances in [40]Ar/[39]Ar dating : from archaeology to planetary sciences , 2014 .

[238]  M. Schmitz Radiogenic Isotope Geochronology , 2012 .

[239]  A. Carroll,et al.  Paleogeographic reconstruction of the Eocene Idaho River, North American Cordillera , 2011 .

[240]  P. Renne,et al.  et al . on “ Joint determination of 40 K decay constants and 40 Ar * / 40 K for the Fish Canyon sanidine standard , and improved accuracy for 40 Ar / 39 Ar geochronology ” by , 2011 .

[241]  P. Renne,et al.  for the Fish Canyon sanidine standard, and improved accuracy for 40 Ar/ 39 Ar geochronology , 2010 .

[242]  T. Harrison,et al.  Diffusion of 40 Ar in muscovite , 2009 .

[243]  Jan Srodoi PRECISE IDENTIFICATION OF ILLITE / SMECTITE INTERSTRATIFICATIONS BY X-RAY POWDER DIFFRACTION , 2006 .

[244]  T. Harrison,et al.  Continuous Thermal Histories from Inversion of Closure Profiles , 2005 .

[245]  S. Kelley K-Ar and Ar-Ar Dating , 2002 .

[246]  P. Renne,et al.  Call for an improved set of decay constants for geochronological use , 2001 .

[247]  Yonghong Yan,et al.  Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation , 2001, Geological Society, London, Special Publications.

[248]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[249]  P. Vasconcelos K-Ar and 40 Ar/39Ar geochronology of weathering process , 1999 .

[250]  Peter Vrolijka,et al.  Clay gouge , 1999 .

[251]  R. Frischknecht,et al.  Capabilities of an Argon Fluoride 193 nm Excimer Laser for LaserAblation Inductively Coupled Plasma Mass Spectometry Microanalysis ofGeological Materials , 1997 .

[252]  K. A. Foland Argon Diffusion in Feldspars , 1994 .

[253]  K. Hodges,et al.  40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain: Evidence for very slow cooling and implications for the interpretation of age spectra , 1994 .

[254]  D. York,et al.  First successful 40Ar-39Ar dating of glauconies: Argon recoil in single grains of cryptocrystalline material , 1993 .

[255]  J. C. Hess,et al.  Kinetics of Ar isotopes during neutron irradiation: 39Ar loss from minerals as a source of error in 40Ar/39Ar dating , 1986 .

[256]  T. Mark Harrison Diffusion of 40Ar in hornblende , 1982 .

[257]  G. B. Dalrymple,et al.  Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor , 1981 .

[258]  M. H. Dodson Theory of Cooling Ages , 1979 .

[259]  J. Lodge Annual review of earth and planetary sciences , 1979 .

[260]  J. Sutter,et al.  Interpretation of discordant 40Ar/39Ar age-spectra of mesozoic tholeiites from antarctica , 1977 .

[261]  I. L. Barnes,et al.  Absolute Isotopic Abundance Ratios and the Atomic Weight of a Reference Sample of Potassium. , 1975, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[262]  D. Heymann,et al.  Atmospheric Ar-40 in lunar fines. , 1972 .

[263]  G. Turner Argon 40-argon 39 dating - The optimization of irradiation parameters , 1971 .

[264]  J. Geiss,et al.  Trapped solar wind noble gases, exposure age and K/Ar-age in Apollo 11 lunar fine material , 1970 .

[265]  H. Fechtig,et al.  The Diffusion of Argon in Potassium-Bearing Solids , 1966 .