Objective Detection of Oceanic Eddies and the Agulhas Leakage

Mesoscale oceanic eddies are routinely detected from instantaneous velocities derived from satellite altimetry data. While simple to implement, this approach often gives spurious results and hides true material transport. Here it is shown how geodesic transport theory, a recently developed technique from nonlinear dynamical systems, uncovers eddies objectively. Applying this theory to altimetry-derived velocities in the South Atlantic reveals, for the first time, Agulhas rings that preserve their material coherence for several months, while ring candidates yielded by other approaches tend to disperse or leak within weeks. These findings suggest that available velocity-based estimates for the Agulhas leakage, as well as for its impact on ocean circulation and climate, need revision.

[1]  David Griffin,et al.  Divergent pathways of cyclonic and anti‐cyclonic ocean eddies , 2004 .

[2]  Lee-Lueng Fu,et al.  Eddy dynamics from satellite altimetry , 2010 .

[3]  Igor Mezić,et al.  A New Mixing Diagnostic and Gulf Oil Spill Movement , 2010, Science.

[4]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[5]  J. Buring,et al.  Observational Evidence , 1993, Annals of the New York Academy of Sciences.

[6]  A. Biastoch,et al.  Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies , 2009, Nature.

[7]  David M. Fratantoni,et al.  Three Agulhas rings observed during the Benguela Current Experiment , 1999 .

[8]  K. Ridgway,et al.  Observational evidence for a Southern Hemisphere oceanic supergyre , 2007 .

[9]  Andrew C. Thomas,et al.  A census of oceanic anticyclonic eddies in the Gulf of Alaska , 2008 .

[10]  Diego Rossinelli,et al.  GPU and APU computations of Finite Time Lyapunov Exponent fields , 2012, J. Comput. Phys..

[11]  C. D. B. Montégut,et al.  Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean , 2011 .

[12]  S. Speich,et al.  Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies - art. no. C05043 , 2007 .

[13]  Gustavo Goni,et al.  A census of North Brazil Current Rings observed from TOPEX/POSEIDON altimetry: 1992–1998 , 2001 .

[14]  A. B. Bowers,et al.  Marine science , 1979, Nature.

[15]  L. Beal,et al.  On the role of the Agulhas system in ocean circulation and climate , 2011, Nature.

[16]  Arnold L. Gordon,et al.  Interocean Exchange of Thermocline Water , 1986 .

[17]  G. Froyland,et al.  Three-dimensional characterization and tracking of an Agulhas Ring , 2012 .

[18]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[19]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[20]  Y. Amitai,et al.  Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring , 2011 .

[21]  D. Chelton,et al.  Global observations of large oceanic eddies , 2007 .

[22]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[23]  F. Hernandez,et al.  A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model , 2004 .

[24]  Thomas Peacock,et al.  Introduction to Focus Issue: Lagrangian Coherent Structures. , 2010, Chaos.

[25]  Jeffrey J. Early,et al.  The Evolution and Propagation of Quasigeostrophic Ocean Eddies , 2011 .

[26]  Gustavo Goni,et al.  Oceanic mesoscale eddies as revealed by Lagrangian coherent structures , 2008 .

[27]  G. Haller,et al.  Geodesic theory of transport barriers in two-dimensional flows , 2012 .

[28]  Antonio Turiel,et al.  Wavelet Filtering to Extract Coherent Vortices from Altimetric Data , 2007 .

[29]  Allan R. Robinson,et al.  Eddies in marine science , 1983 .

[30]  H. Lugt,et al.  The Dilemma of Defining a Vortex , 1979 .

[31]  C. Sim On Quasiperiodic Perturbations of EllipticEquilibrium Points , 2007 .

[32]  R. Evans,et al.  Rings of the Agulhas current , 1986 .

[33]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[34]  Hans Hagen,et al.  Efficient Computation and Visualization of Coherent Structures in Fluid Flow Applications , 2007, IEEE Transactions on Visualization and Computer Graphics.

[35]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[36]  P. L. Traon,et al.  AN IMPROVED MAPPING METHOD OF MULTISATELLITE ALTIMETER DATA , 1998 .

[37]  J. Font,et al.  Identification of Marine Eddies from Altimetric Maps , 2003 .

[38]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[39]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[40]  D. Chelton,et al.  The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll , 2011, Science.

[41]  Fangxin Fang,et al.  Evolution, movement and decay of warm-core Leeuwin Current eddies , 2003 .

[42]  GarthChristoph,et al.  Efficient Computation and Visualization of Coherent Structures in Fluid Flow Applications , 2007 .