Orbits of linear series on the projective line

. We compute the equivariant fundamental class of the orbit closure of a linear series on the projective line. We also describe the boundary of the orbit closure and how the orbits specialise in one parameter families.

[1]  Anand Patel,et al.  A Universal Formula For Counting Cubic Surfaces , 2021, 2109.12672.

[2]  Mitchell Lee,et al.  Orbits in (Pr)n and equivariant quantum cohomology , 2020 .

[3]  Mitchell Lee,et al.  Equivariant Degenerations of Plane Curve Orbits. , 2019, 1903.10069.

[4]  L. Fehér,et al.  Characteristic Classes of Orbit Stratifications, the Axiomatic Approach , 2018, Springer Proceedings in Mathematics & Statistics.

[5]  Alex Fink,et al.  EQUIVARIANT CHOW CLASSES OF MATRIX ORBIT CLOSURES , 2015, 1507.05054.

[6]  Richárd Rimányi,et al.  A formula for non-equioriented quiver orbits of type a , 2004, math/0412073.

[7]  Brian Osserman A limit linear series moduli scheme , 2004, math/0407496.

[8]  P. Aluffi,et al.  Linear orbits of arbitrary plane curves. , 1999, math/9912092.

[9]  William Graham,et al.  Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2) , 1998 .

[10]  W. Graham,et al.  Localization in equivariant intersection theory and the Bott residue formula , 1995, alg-geom/9508001.

[11]  P. Aluffi,et al.  Linear orbits of smooth plane curves , 1992, alg-geom/9206001.

[12]  P. Aluffi,et al.  Linear orbits of d-tuples of points in P1. , 1992, alg-geom/9205005.

[13]  D. Eisenbud,et al.  Limit linear series: Basic theory , 1986 .

[14]  Joe Harris,et al.  Divisors on general curves and cuspidal rational curves , 1983 .

[15]  Anand Patel,et al.  ORBITS IN pPq AND EQUIVARIANT QUANTUM COHOMOLOGY , 2019 .