Photonic spin-controlled multifunctional shared-aperture antenna array

Multifunction planar optics Specially designed two-dimensional (2D) arrays of nanometer-scale metallic antennas, or metasurfaces, may allow bulky optical components to be shrunk down to a planar device structure. Khorasaninejad et al. show that arrays of nanoscale fins of TiO can function as high-end optical lenses. At just a fraction of the size of optical objectives, such planar devices could turn your phone camera or your contact lens into a compound microscope. Maguid et al. interleaved sparse 2D arrays of metal antennas to get multifunctional behavior from the one planar device structure (see the Perspective by Litchinitser). The enhanced functionality of such designed metasurfaces could be used in sensing applications or to increase the communication capacity of nanophotonic networks. Science, this issue pp. 1190 and 1202; see also p. 1177 A 2D nanophotonic system can be designed with multifunctional optical capability. The shared-aperture phased antenna array developed in the field of radar applications is a promising approach for increased functionality in photonics. The alliance between the shared-aperture concepts and the geometric phase phenomenon arising from spin-orbit interaction provides a route to implement photonic spin-control multifunctional metasurfaces. We adopted a thinning technique within the shared-aperture synthesis and investigated interleaved sparse nanoantenna matrices and the spin-enabled asymmetric harmonic response to achieve helicity-controlled multiple structured wavefronts such as vortex beams carrying orbital angular momentum. We used multiplexed geometric phase profiles to simultaneously measure spectrum characteristics and the polarization state of light, enabling integrated on-chip spectropolarimetric analysis. The shared-aperture metasurface platform opens a pathway to novel types of nanophotonic functionality.

[1]  K. Bliokh,et al.  Angular Momenta and Spin-Orbit Interaction of Nonparaxial Light in Free Space , 2010, 1006.3876.

[2]  Vladlen G. Shvedov,et al.  A long-range polarization-controlled optical tractor beam , 2014, Nature Photonics.

[3]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[4]  N. Litchinitser,et al.  Spinning light on the nanoscale. , 2014, Nano letters.

[5]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[6]  Erez Hasman,et al.  Multiple Wavefront Shaping by Metasurface Based on Mixed Random Antenna Groups , 2015 .

[7]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[8]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[9]  M. Brongersma,et al.  Creating semiconductor metafilms with designer absorption spectra , 2015, Nature Communications.

[10]  A.M. Sayeed,et al.  Maximizing MIMO Capacity in Sparse Multipath With Reconfigurable Antenna Arrays , 2007, IEEE Journal of Selected Topics in Signal Processing.

[11]  Mark Brongersma,et al.  Shape-dependent light scattering properties of subwavelength silicon nanoblocks. , 2015, Nano letters.

[12]  R. Haupt,et al.  Interleaved thinned linear arrays , 2005, IEEE Transactions on Antennas and Propagation.

[13]  D. Gramotnev,et al.  Continuous layer gap plasmon resonators. , 2011, Optics express.

[14]  Gabriella Cincotti,et al.  Analytical derivation of the optimum triplicator , 1998 .

[15]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[16]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[17]  L.P. Ligthart,et al.  Interleaved Array Antennas for FMCW Radar Applications , 2009, IEEE Transactions on Antennas and Propagation.

[18]  Harald Giessen,et al.  Imaging and steering an optical wireless nanoantenna link , 2014, Nature Communications.

[19]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[20]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[21]  David M. Pozar,et al.  A shared-aperture dual-band dual-polarized microstrip array , 2001 .

[22]  Asher A. Friesem,et al.  The formation of laser beams with pure azimuthal or radial polarization , 2000 .

[23]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[24]  Erez Hasman,et al.  Manipulation of the Pancharatnam phase in vectorial vortices. , 2006, Optics express.

[25]  H. Dammann,et al.  High-efficiency in-line multiple imaging by means of multiple phase holograms , 1971 .

[26]  Vladimir M. Shalaev,et al.  Photonic spin Hall effect in gap─plasmon metasurfaces for on-chip chiroptical spectroscopy , 2015 .

[27]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[28]  N. Davidson,et al.  High-resolution spectrometry for diffuse light by use of anamorphic concentration. , 1999, Optics letters.

[29]  Jorge Albero,et al.  Generalized diffractive optical elements with asymmetric harmonic response and phase control. , 2013, Applied optics.

[30]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.

[31]  G. Biener,et al.  Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings. , 2005, Optics letters.

[32]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[33]  A. Penzkofer Optical Rotatory Dispersion Measurement of D-Glucose with Fixed Polarizer Analyzer Accessory in Conventional Spectrophotometer , 2013 .

[34]  D. Gabor IV Light and Information , 1961 .

[35]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[36]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[37]  Sergey I. Bozhevolnyi,et al.  Plasmonic metagratings for simultaneous determination of Stokes parameters , 2015, 1609.04691.

[38]  G. Biener,et al.  Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam-Berry phase optical elements. , 2006, Optics letters.

[39]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[40]  E. Hasman,et al.  Geometric doppler effect: spin-split dispersion of thermal radiation. , 2010, Physical review letters.

[41]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[42]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.