Effect of ammonium acetate on alcohol fermentation in cassava-alcohol fermentation process.

[1]  Jian Chen,et al.  Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae , 2018, Microbiology and Molecular Biology Reviews.

[2]  Yuqi Wang,et al.  Nitrogen Starvation-induced Phosphorylation of Ras1 Protein and Its Potential Role in Nutrient Signaling and Stress Response* , 2016, The Journal of Biological Chemistry.

[3]  R. Rai,et al.  The Four Faces of Gln3 and Its Response to Nitrogen Catabolite Repression , 2016 .

[4]  Zhonggui Mao,et al.  Reusing a mixture of anaerobic digestion effluent and thin stillage for cassava ethanol production , 2014 .

[5]  E. Marra,et al.  Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid , 2013, Front. Microbio..

[6]  S. Brul,et al.  Quantitative Analysis of the Modes of Growth Inhibition by Weak Organic Acids in Saccharomyces cerevisiae , 2012, Applied and Environmental Microbiology.

[7]  Koon Ho Wong,et al.  Recent Advances in Nitrogen Regulation: a Comparison between Saccharomyces cerevisiae and Filamentous Fungi , 2008, Eukaryotic Cell.

[8]  M. Moo-young,et al.  Ethanol fermentation technologies from sugar and starch feedstocks. , 2008, Biotechnology advances.

[9]  Donghai Wang,et al.  Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation , 2008, Journal of Industrial Microbiology & Biotechnology.

[10]  Mehdi Mollapour,et al.  Hog1 Mitogen-Activated Protein Kinase Phosphorylation Targets the Yeast Fps1 Aquaglyceroporin for Endocytosis, Thereby Rendering Cells Resistant to Acetic Acid , 2007, Molecular and Cellular Biology.

[11]  Mehdi Mollapour,et al.  Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. , 2006, FEMS yeast research.

[12]  Donghai Wang,et al.  Ethanol production from pearl millet using Saccharomyces cerevisiae , 2006 .

[13]  A. Mendes-Ferreira,et al.  Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry , 2004, Journal of applied microbiology.

[14]  C. Varela,et al.  Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts , 2004, Applied and Environmental Microbiology.

[15]  B. Dale,et al.  Global potential bioethanol production from wasted crops and crop residues , 2004 .

[16]  C. Kaiser,et al.  Nitrogen regulation in Saccharomyces cerevisiae. , 2002, Gene.

[17]  W. M. Ingledew,et al.  Influence of Medium Buffering Capacity on Inhibition of Saccharomyces cerevisiae Growth by Acetic and Lactic Acids , 2002, Applied and Environmental Microbiology.

[18]  L. Jespersen,et al.  Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid , 2000, Archives of Microbiology.

[19]  Graeme M. Walker,et al.  Yeast Physiology and Biotechnology , 1998 .

[20]  M. Grenson,et al.  Nitrogen catabolite repression in yeasts and filamentous fungi. , 1985, Advances in microbial physiology.

[21]  T. Cooper Nitrogen Metabolism in Saccharomyces cerevisiae , 1982 .