Absorption, refractive index, and birefringence of AlAs‐GaAs monolayers

The band structure of artificial periodic crystals grown by molecular‐beam epitaxy and consisting of sequential AlAs and GaAs monolayers differs slightly from AlxGa1−xAs random alloys having a comparable average Al content. The measured direct band gaps are up to 110 meV higher than the alloys, and the indirect gaps up to 70 meV higher. The measured dispersion of the refractive index agrees best with the theoretical dispersion curve of an alloy composition having a higher Al content than in the monolayer. This is consistent with the higher band gap of the monolayer. The alloy and monolayer exhibit a birefringence resulting from strain‐induced anisotropy of the lower and upper cutoffs of the complex part of the dielectric constant. The strain results from the differential thermal contraction of the layers and the GaAs substrate on cooling from the growth temperature to room temperature. The birefringence of the monolayer sample contains an additional contribution resulting from the periodic structure.

[1]  R. Dingle,et al.  Optical investigation of stress in the central GaAs layer of molecular‐beam‐grown AlxGa1−xAs‐GaAs‐AlxGa1−xAs structures , 1975 .

[2]  R. Dingle,et al.  Direct Observation of Superlattice Formation in a Semiconductor Heterostructure , 1975 .

[3]  H. Casey,et al.  Composition Dependence of the Ga1−xAlxAs Direct and Indirect Energy Gaps , 1969 .

[4]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[5]  B. Pamplin Festkörperprobleme XV (Advances in solid state physics): by H.J. Queisser, 426 pages, illustr., 6x812 in. Pergamon Press/Vieweg, Oxford, 1975. Price, $45.00 (approx. £20·00). , 1976 .

[6]  C. Mead,et al.  Conduction Band Minima in AlAs and AlSb , 1963 .

[7]  Leroy L. Chang,et al.  Effects of Quantum States on the Photocurrent in a , 1975 .

[8]  R Hill,et al.  Energy-gap variations in semiconductor alloys , 1974 .

[9]  D. Parker,et al.  Coefficient of Expansion of GaAs, GaP, and Ga(As, P) Compounds from −62° to 200°C , 1967 .

[10]  M. Ettenberg,et al.  Thermal Expansion of AlAs , 1970 .

[11]  Martin A. Afromowitz,et al.  Refractive index of Ga1−xAlxAs , 1974 .

[12]  A. G. Milnes,et al.  Heterojunctions and Metal Semiconductor Junctions , 1972 .

[13]  H. Casey,et al.  Optical absorption and photoluminescence studies of thin GaAs layers in GaAs–AlxGa1−xAs double heterostructures , 1974 .

[14]  L. Esaki,et al.  Smooth and coherent layers of GaAs and AlAs grown by molecular beam epitaxy , 1976 .

[15]  M. Cardona,et al.  Spatial dispersion in the dielectric constant of GaAs , 1971 .

[16]  L. Esaki,et al.  Ga1−x Alx As superlattices profiled by Auger electron spectroscopy , 1974 .

[17]  Marc Ilegems,et al.  Optical birefringence of thin GaAs‐AlAs multilayer films , 1976 .

[18]  T. K. Bergstresser,et al.  Electronic Structures of Semiconductor Alloys , 1970 .

[19]  B. Monemar,et al.  Fundamental Energy Gaps of AlAs and Alp from Photoluminescence Excitation Spectra , 1973 .

[20]  D. Mukherji,et al.  Band structure of semiconductor superlattices , 1975 .

[21]  W. Penney,et al.  Quantum Mechanics of Electrons in Crystal Lattices , 1931 .

[22]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[23]  K. Vedam,et al.  Optical Anisotropy of Silicon Single Crystals , 1971 .

[24]  R. Dingle,et al.  Epitaxial structures with alternate‐atomic‐layer composition modulation , 1976 .

[25]  R. Dingle,et al.  Polariton Reflectance and Photoluminescence in High-Purity GaAs , 1973 .