Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.

[1]  Y. Sachkov Conjugate Points in the Euler Elastic Problem , 2008 .

[2]  Yu. L. Sachkov,et al.  Maxwell strata in sub-Riemannian problem on the group of motions of a plane , 2008, 0807.4731.

[3]  A. Agrachev Geometry of Optimal Control Problems and Hamiltonian Systems , 2005, math/0506197.

[4]  Y. Sachkov Conjugate points in Euler's elastic problem , 2007, 0705.1003.

[5]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[6]  Yurii Leonidovich Sachkov Complete description of the Maxwell strata in the generalized Dido problem , 2006 .

[7]  R. Fateman,et al.  A System for Doing Mathematics by Computer. , 1992 .

[8]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[9]  S. Tikhonov Embedding lattice actions in flows with multidimensional time , 2006 .

[10]  Y. Sachkov,et al.  Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane , 2011 .

[11]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[12]  Estimates of Green potentials. Applications , 2003 .

[13]  The Maxwell set in the generalized Dido problem , 2006 .

[14]  Y. Sachkov Maxwell strata in the Euler elastic problem , 2008 .

[15]  Mirosław Galicki,et al.  Nonholonomic Motion Planning of Mobile Robots , 2009 .

[16]  Множество Максвелла в обобщенной задаче Дидоны@@@The Maxwell set in the generalized Dido problem , 2006 .

[17]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[18]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[19]  Discrete symmetries in the generalized Dido problem , 2006 .

[20]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[21]  A. Agrachev Exponential mappings for contact sub-Riemannian structures , 1996 .

[22]  Экспоненциальное отображение в обобщенной задаче Дидоны@@@Exponential map in the generalized Dido problem , 2003 .

[23]  Yu. L. Sachkov,et al.  Maxwell strata in Euler's elastic problem , 2007, 0705.0614.

[24]  J. Gauthier,et al.  The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.

[25]  J. Gauthier,et al.  Small sub-Riemannian balls onR3 , 1996 .

[26]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[27]  A V Saryčev,et al.  THE INDEX OF THE SECOND VARIATION OF A CONTROL SYSTEM , 1982 .

[28]  Юрий Леонидович Сачков,et al.  Полное описание стратов Максвелла в обобщенной задаче Дидоны@@@Complete description of the Maxwell strata in the generalized Dido problem , 2006 .

[29]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[30]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .