Uniform Monte Carlo localization - fast and robust self-localization method for mobile robots

In this paper, we describe a novel self-localization algorithm. Self-localization methods are required for lowering the computational cost and handling vague sensor data. Thus, we propose to use only the uniform distribution to represent probability distributions in Monte Carlo localization, and name this method a uniform Monte Carlo localization (Uniform MCL). We manifest the low computational cost and robustness of Uniform MCL in the environment of RoboCup Sony legged robot league.

[1]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[3]  Hiroaki Kitano,et al.  RoboCup: Today and Tomorrow - What we have learned , 1999, Artif. Intell..

[4]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[5]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[6]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Steffen Brüggert,et al.  Fault-Tolerant Self Localization by Case-Based Reasoning , 2000, RoboCup.

[8]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[9]  Manuela M. Veloso,et al.  The CMTrio-98 Sony-Legged Robot Team , 1998, RoboCup.

[10]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..