Interval degree and bandwidth of a graph

The interval degree id(G) of a graph G is defined to be the smallest max-degree of any interval supergraphs of G. One of the reasons for our interest in this parameter is that the bandwidth of a graph is always between id(G)/2 and id(G). We prove also that for any graph G the interval degree of G is at least the pathwidth of G2. We show that if G is an AT-free claw-free graph, then the interval degree of G is equal to the clique number of G2 minus one. Finally, we show that there is a polynomial time algorithm for computing the interval degree of AT-free claw-free graphs.

[1]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..

[2]  Santosh S. Vempala,et al.  Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 1998, STOC '98.

[3]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[4]  Dieter Kratsch,et al.  Approximating Bandwidth by Mixing Layouts of Interval Graphs , 1999, STACS.

[5]  Rolf H. M ring Triangulating graphs without asteroidal triples , 1996 .

[6]  Fan Chung Graham,et al.  Chordal Completions of Planar Graphs , 1994, J. Comb. Theory, Ser. B.

[7]  Walter Unger,et al.  The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[9]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[10]  Uriel Feige,et al.  Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.

[11]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[12]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[13]  Santosh S. Vempala,et al.  On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.

[14]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[15]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[16]  Dieter Kratsch,et al.  Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1999, J. Algorithms.

[17]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[18]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[19]  Jou-Ming Chang,et al.  On the powers of graphs with bounded asteroidal number , 2000, Discret. Math..

[20]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[21]  Marek Karpinski,et al.  On Approximation Hardness of the Bandwidth Problem , 1997, Electron. Colloquium Comput. Complex..

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[24]  Rolf H. Möhring,et al.  Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .

[25]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[26]  Alain Billionnet,et al.  On interval graphs and matrice profiles , 1986 .

[27]  Santosh S. Vempala,et al.  Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 2000, Theor. Comput. Sci..

[28]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[29]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .