Interval degree and bandwidth of a graph
暂无分享,去创建一个
[1] Christos H. Papadimitriou,et al. Interval graphs and seatching , 1985, Discret. Math..
[2] Santosh S. Vempala,et al. Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 1998, STOC '98.
[3] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .
[4] Dieter Kratsch,et al. Approximating Bandwidth by Mixing Layouts of Interval Graphs , 1999, STACS.
[5] Rolf H. M ring. Triangulating graphs without asteroidal triples , 1996 .
[6] Fan Chung Graham,et al. Chordal Completions of Planar Graphs , 1994, J. Comb. Theory, Ser. B.
[7] Walter Unger,et al. The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[8] Uriel Feige,et al. Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..
[9] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[10] Uriel Feige,et al. Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.
[11] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[12] Ivan Hal Sudborough,et al. The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..
[13] Santosh S. Vempala,et al. On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.
[14] J. A. Bondy,et al. Basic graph theory: paths and circuits , 1996 .
[15] Norman E. Gibbs,et al. The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.
[16] Dieter Kratsch,et al. Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1999, J. Algorithms.
[17] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[18] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[19] Jou-Ming Chang,et al. On the powers of graphs with bounded asteroidal number , 2000, Discret. Math..
[20] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[21] Marek Karpinski,et al. On Approximation Hardness of the Bandwidth Problem , 1997, Electron. Colloquium Comput. Complex..
[22] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[23] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .
[24] Rolf H. Möhring,et al. Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .
[25] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[26] Alain Billionnet,et al. On interval graphs and matrice profiles , 1986 .
[27] Santosh S. Vempala,et al. Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 2000, Theor. Comput. Sci..
[28] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[29] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .