Coherent-state quantum key distribution without random basis switching (9 pages)

The random switching of measurement bases is commonly assumed to be a necessary step of quantum key distribution protocols. In this paper we present a no-switching protocol and show that switching is not required for coherent-state continuous-variable quantum key distribution. Further, this protocol achieves higher information rates and a simpler experimental setup compared to previous protocols that rely on switching. We propose an optimal eavesdropping attack against this protocol, assuming individual Gaussian attacks. Finally, we investigate and compare the no-switching protocol applied to the original Bennett-Brassard 1984 scheme.

[1]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  John Preskill,et al.  Secure quantum key distribution using squeezed states , 2001 .

[4]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[5]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[6]  N. Cerf,et al.  Quantum distribution of Gaussian keys using squeezed states , 2000, quant-ph/0008058.

[7]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[8]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[9]  Gerd Leuchs,et al.  Continuous-variable quantum key distribution using polarization encoding and post selection , 2004, quant-ph/0403064.

[10]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[11]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[12]  Ueli Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[13]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[14]  Frédéric Grosshans Collective attacks and unconditional security in continuous variable quantum key distribution. , 2005, Physical review letters.

[15]  A. Dolinska,et al.  Optimal cloning for finite distributions of coherent states (6 pages) , 2004 .

[16]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[17]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[18]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[21]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[22]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Vikram Sharma,et al.  No-switching quantum key distribution using broadband modulated coherent light. , 2005, Physical review letters.

[24]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[25]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[26]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[27]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[28]  N J Cerf,et al.  Security of quantum key distribution with coherent states and homodyne detection. , 2004, Physical review letters.

[29]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[30]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[31]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[32]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[33]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.