暂无分享,去创建一个
[1] Giri Narasimhan,et al. A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.
[2] Lee-Ad Gottlieb,et al. Improved algorithms for fully dynamic geometric spanners and geometric routing , 2008, SODA '08.
[3] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[4] Michael Elkin,et al. Balancing Degree, Diameter, and Weight in Euclidean Spanners , 2011, SIAM J. Discret. Math..
[5] Robert Krauthgamer,et al. Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[6] Richard Cole,et al. Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.
[7] Joachim Gudmundsson,et al. Approximate distance oracles for geometric spanners , 2008, TALG.
[8] J. Mark Keil,et al. Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.
[9] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[10] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[11] Shay Solomon. An Optimal-Time Construction of Euclidean Sparse Spanners with Tiny Diameter , 2010, ArXiv.
[12] Michiel H. M. Smid,et al. Lower bounds for computing geometric spanners and approximate shortest paths , 1996, Discret. Appl. Math..
[13] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[14] Shay Solomon. Fault-Tolerant Spanners for Doubling Metrics: Better and Simpler , 2012, ArXiv.
[15] David Peleg,et al. An approximation algorithm for minimum-cost network design , 1994, Robust Communication Networks: Interconnection and Survivability.
[16] Li Ning,et al. Incubators vs Zombies: Fault-Tolerant, Short, Thin and Lanky Spanners for Doubling Metrics , 2012, ArXiv.
[17] Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics , 2014, STOC.
[18] Kunal Talwar,et al. Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.
[19] Giri Narasimhan,et al. Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.
[20] Bruce M. Maggs,et al. On hierarchical routing in doubling metrics , 2005, SODA '05.
[21] Anupam Gupta,et al. Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.
[22] Sariel Har-Peled,et al. Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.
[23] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..
[24] Joachim Gudmundsson,et al. Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..
[25] Satish Rao,et al. Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.
[26] R. Varga,et al. Proof of Theorem 1 , 1983 .
[27] David Peleg,et al. Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.
[28] Michiel H. M. Smid,et al. Efficient Construction of a Bounded Degree Spanner with Low Weight , 1994, ESA.
[29] Lee-Ad Gottlieb,et al. The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme , 2011, STOC '12.
[30] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[31] Lee-Ad Gottlieb,et al. Efficient Regression in Metric Spaces via Approximate Lipschitz Extension , 2011, IEEE Transactions on Information Theory.
[32] Joachim Gudmundsson,et al. Fast Pruning of Geometric Spanners , 2005, STACS.
[33] Joachim Gudmundsson,et al. Approximate Distance Oracles Revisited , 2002, ISAAC.
[34] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[35] Li Ning,et al. New Doubling Spanners: Better and Simpler , 2013, SIAM J. Comput..
[36] Pankaj K. Agarwal,et al. Lower bound for sparse Euclidean spanners , 2005, SODA '05.
[37] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[38] Dan Suciu,et al. Journal of the ACM , 2006 .
[39] Michiel H. M. Smid,et al. The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension , 2009, Efficient Algorithms.
[40] Michael Elkin,et al. Optimal Euclidean Spanners , 2015 .
[41] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[42] Ittai Abraham,et al. Advances in metric embedding theory , 2006, STOC '06.
[43] Michael Elkin,et al. Fast Constructions of Light-Weight Spanners for General Graphs , 2012, SODA.
[44] Michiel H. M. Smid,et al. Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.
[45] Liam Roditty. Fully Dynamic Geometric Spanners , 2007, SCG '07.
[46] Leonidas J. Guibas,et al. Deformable spanners and applications , 2004, SCG '04.
[47] Giri Narasimhan,et al. New sparseness results on graph spanners , 1992, SCG '92.
[48] Michiel H. M. Smid,et al. Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[49] Pravin M. Vaidya,et al. A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..
[50] Joachim Gudmundsson,et al. Approximate distance oracles for geometric graphs , 2002, SODA '02.
[51] Michael Elkin,et al. Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners , 2008, FOCS.
[52] Kenneth L. Clarkson,et al. Approximation algorithms for shortest path motion planning , 1987, STOC.
[53] Kenneth L. Clarkson,et al. Nearest Neighbor Queries in Metric Spaces , 1999, Discret. Comput. Geom..
[54] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[55] Lee-Ad Gottlieb,et al. An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.
[56] Jeffrey S. Salowe. On Euclidean spanner graphs with small degree , 1992, SCG '92.
[57] Shay Solomon. An optimal-time construction of sparse Euclidean spanners with tiny diameter , 2011, SODA '11.
[58] Robert Krauthgamer,et al. Navigating nets: simple algorithms for proximity search , 2004, SODA '04.
[59] Jeffrey S. Salowe. Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.