Optimal euclidean spanners: really short, thin and lanky

The degree, the (hop-)diameter, and the weight are the most basic and well-studied parameters of geometric spanners. In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. [2] devised a construction of Euclidean (1+ε)-spanners that achieves constant degree, diameter O(log n), weight O(log2 n) ⋅ ω(MST), and has running time O(n ⋅ log n). This construction applies to n-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became one of the most central open problems in the area of Euclidean spanners. Nevertheless, the only progress since 1995 towards its resolution was achieved in the lower bounds front: Any spanner with diameter O(log n) must incur weight Ω(log n) ⋅ ω(MST), and this lower bound holds regardless of the stretch or the degree of the spanner [12, 1]. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. We present a spanner construction with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(log n) ⋅ ω(MST). So our spanners are as thin and lanky as those of Arya et al., but they are really short! Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.

[1]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[2]  Lee-Ad Gottlieb,et al.  Improved algorithms for fully dynamic geometric spanners and geometric routing , 2008, SODA '08.

[3]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[4]  Michael Elkin,et al.  Balancing Degree, Diameter, and Weight in Euclidean Spanners , 2011, SIAM J. Discret. Math..

[5]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[6]  Richard Cole,et al.  Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.

[7]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric spanners , 2008, TALG.

[8]  J. Mark Keil,et al.  Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.

[9]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[10]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[11]  Shay Solomon An Optimal-Time Construction of Euclidean Sparse Spanners with Tiny Diameter , 2010, ArXiv.

[12]  Michiel H. M. Smid,et al.  Lower bounds for computing geometric spanners and approximate shortest paths , 1996, Discret. Appl. Math..

[13]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[14]  Shay Solomon Fault-Tolerant Spanners for Doubling Metrics: Better and Simpler , 2012, ArXiv.

[15]  David Peleg,et al.  An approximation algorithm for minimum-cost network design , 1994, Robust Communication Networks: Interconnection and Survivability.

[16]  Li Ning,et al.  Incubators vs Zombies: Fault-Tolerant, Short, Thin and Lanky Spanners for Doubling Metrics , 2012, ArXiv.

[17]  Shay Solomon From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics , 2014, STOC.

[18]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[19]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[20]  Bruce M. Maggs,et al.  On hierarchical routing in doubling metrics , 2005, SODA '05.

[21]  Anupam Gupta,et al.  Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.

[22]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[23]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[24]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[25]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[26]  R. Varga,et al.  Proof of Theorem 1 , 1983 .

[27]  David Peleg,et al.  Sparse communication networks and efficient routing in the plane , 2001, Distributed Computing.

[28]  Michiel H. M. Smid,et al.  Efficient Construction of a Bounded Degree Spanner with Low Weight , 1994, ESA.

[29]  Lee-Ad Gottlieb,et al.  The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme , 2011, STOC '12.

[30]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[31]  Lee-Ad Gottlieb,et al.  Efficient Regression in Metric Spaces via Approximate Lipschitz Extension , 2011, IEEE Transactions on Information Theory.

[32]  Joachim Gudmundsson,et al.  Fast Pruning of Geometric Spanners , 2005, STACS.

[33]  Joachim Gudmundsson,et al.  Approximate Distance Oracles Revisited , 2002, ISAAC.

[34]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[35]  Li Ning,et al.  New Doubling Spanners: Better and Simpler , 2013, SIAM J. Comput..

[36]  Pankaj K. Agarwal,et al.  Lower bound for sparse Euclidean spanners , 2005, SODA '05.

[37]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[38]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[39]  Michiel H. M. Smid,et al.  The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension , 2009, Efficient Algorithms.

[40]  Michael Elkin,et al.  Optimal Euclidean Spanners , 2015 .

[41]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[42]  Ittai Abraham,et al.  Advances in metric embedding theory , 2006, STOC '06.

[43]  Michael Elkin,et al.  Fast Constructions of Light-Weight Spanners for General Graphs , 2012, SODA.

[44]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.

[45]  Liam Roditty Fully Dynamic Geometric Spanners , 2007, SCG '07.

[46]  Leonidas J. Guibas,et al.  Deformable spanners and applications , 2004, SCG '04.

[47]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[48]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[49]  Pravin M. Vaidya,et al.  A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..

[50]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric graphs , 2002, SODA '02.

[51]  Michael Elkin,et al.  Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners , 2008, FOCS.

[52]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[53]  Kenneth L. Clarkson,et al.  Nearest Neighbor Queries in Metric Spaces , 1999, Discret. Comput. Geom..

[54]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[55]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[56]  Jeffrey S. Salowe On Euclidean spanner graphs with small degree , 1992, SCG '92.

[57]  Shay Solomon An optimal-time construction of sparse Euclidean spanners with tiny diameter , 2011, SODA '11.

[58]  Robert Krauthgamer,et al.  Navigating nets: simple algorithms for proximity search , 2004, SODA '04.

[59]  Jeffrey S. Salowe Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.