Using “Omics” and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases

Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called “omics,” are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov–Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.

[1]  Gregory Ditzler,et al.  Feature subset selection for inferring relative importance of taxonomy , 2014, BCB.

[2]  P. Daszak,et al.  Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade , 2012, Molecular ecology.

[3]  William E. Stutz,et al.  Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity , 2014, Molecular ecology.

[4]  N. Loman,et al.  Twenty years of bacterial genome sequencing , 2015, Nature Reviews Microbiology.

[5]  Sharon I. Greenblum,et al.  Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease , 2011, Proceedings of the National Academy of Sciences.

[6]  Katherine H. Huang,et al.  Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes , 2012, Genome Biology.

[7]  B. Bolker,et al.  Context‐dependent conservation responses to emerging wildlife diseases , 2015 .

[8]  Robert M. Brucker,et al.  The Hologenomic Basis of Speciation: Gut Bacteria Cause Hybrid Lethality in the Genus Nasonia , 2013, Science.

[9]  R. Sharan,et al.  Metabolic-network-driven analysis of bacterial ecological strategies , 2009, Genome Biology.

[10]  Taane G. Clark,et al.  Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice , 2012, PLoS pathogens.

[11]  R. Harris,et al.  Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. , 2013, Ecology letters.

[12]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[13]  C. Briggs,et al.  The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection , 2014, Proceedings of the National Academy of Sciences.

[14]  T. Shimosato,et al.  Effect of Probiotics/Prebiotics on Cattle Health and Productivity , 2015, Microbes and environments.

[15]  Elhanan Borenstein,et al.  Reverse Ecology: from systems to environments and back. , 2012, Advances in experimental medicine and biology.

[16]  Aedín C. Culhane,et al.  A multivariate approach to the integration of multi-omics datasets , 2014, BMC Bioinformatics.

[17]  R. Harris,et al.  Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis , 2012 .

[18]  Rob Knight,et al.  The microbiome of uncontacted Amerindians , 2015, Science Advances.

[19]  Elhanan Borenstein,et al.  Computational systems biology and in silico modeling of the human microbiome , 2012, Briefings Bioinform..

[20]  Dongmei Ai,et al.  Efficient statistical significance approximation for local similarity analysis of high-throughput time series data , 2013, Bioinform..

[21]  R. Knight,et al.  Skin bacteria provide early protection for newly metamorphosed southern leopard frogs (Rana sphenocephala) against the frog-killing fungus, Batrachochytrium dendrobatidis , 2015 .

[22]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[23]  Robert M. Brucker,et al.  THE ROLES OF HOST EVOLUTIONARY RELATIONSHIPS (GENUS: NASONIA) AND DEVELOPMENT IN STRUCTURING MICROBIAL COMMUNITIES , 2012, Evolution; international journal of organic evolution.

[24]  F. Haesebrouck,et al.  Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans , 2015, Scientific Reports.

[25]  Reinhard Guthke,et al.  Computational prediction of molecular pathogen-host interactions based on dual transcriptome data , 2015, Front. Microbiol..

[26]  Dimension Reduction for Multinomial Models Via a Kolmogorov-Smirnov Measure ( KSM ) , 2015 .

[27]  B. Gratwicke,et al.  Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease , 2014, PloS one.

[28]  R. Harris,et al.  Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus , 2009, The ISME Journal.

[29]  E. Borenstein,et al.  Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules , 2013, Proceedings of the National Academy of Sciences.

[30]  P. Denning,et al.  Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? , 2013, Clinics in perinatology.

[31]  D. Woodhams,et al.  The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis , 2012 .

[32]  Nicolas Pollet,et al.  Microbiota and Mucosal Immunity in Amphibians , 2015, Front. Immunol..

[33]  A. Lagalante,et al.  Nonlethal amphibian skin swabbing of cutaneous natural products for HPLC fingerprinting , 2014 .

[34]  R. Alford,et al.  Cool Temperatures Reduce Antifungal Activity of Symbiotic Bacteria of Threatened Amphibians – Implications for Disease Management and Patterns of Decline , 2014, PloS one.

[35]  J. Barea Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions , 2015 .

[36]  R. Harris,et al.  Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar , 2015, Scientific Reports.

[37]  J. Piotrowski,et al.  Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. , 2004, Mycologia.

[38]  Eric D. Kelsic,et al.  Counteraction of antibiotic production and degradation stabilizes microbial communities , 2015, Nature.

[39]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[40]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[41]  P. McGettigan Transcriptomics in the RNA-seq era. , 2013, Current opinion in chemical biology.

[42]  Benoit Barrès,et al.  Co-infection alters population dynamics of infectious disease , 2015, Nature Communications.

[43]  R. Harris,et al.  Gut of Red-backed Salamanders (Plethodon cinereus) May Serve as a Reservoir for an Antifungal Cutaneous Bacterium , 2011 .

[44]  T. Raffel,et al.  Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression , 2014, Nature.

[45]  M. Fisher,et al.  Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians , 2013, Proceedings of the National Academy of Sciences.

[46]  Robert J. Rudd,et al.  Bat White-Nose Syndrome: An Emerging Fungal Pathogen? , 2009, Science.

[47]  C. Briggs,et al.  IMMUNIZATION IS INEFFECTIVE AT PREVENTING INFECTION AND MORTALITY DUE TO THE AMPHIBIAN CHYTRID FUNGUS BATRACHOCHYTRIUM DENDROBATIDIS , 2010, Journal of wildlife diseases.

[48]  W. Crielaard,et al.  Personalized microbial network inference via co-regularized spectral clustering. , 2015, Methods.

[49]  H. Bais,et al.  Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem1[C] , 2014, Plant Physiology.

[50]  Rhys A. Farrer,et al.  Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity , 2013, PLoS genetics.

[51]  Jesse R. Zaneveld,et al.  Effects of library size variance, sparsity, and compositionality on the analysis of microbiome data , 2015 .

[52]  Karsten Zengler,et al.  The microbiome extends to subepidermal compartments of normal skin , 2012, Nature Communications.

[53]  R. Preziosi,et al.  Impact of Plant Cover on Fitness and Behavioural Traits of Captive Red-Eyed Tree Frogs (Agalychnis callidryas) , 2014, PloS one.

[54]  Elhanan Borenstein,et al.  Topological Signatures of Species Interactions in Metabolic Networks , 2009, J. Comput. Biol..

[55]  J. Daly,et al.  Alkaloids of Anuran Skin: Antimicrobial Function? , 2005, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[56]  F. Balloux,et al.  A de novo Assembly of the Common Frog (Rana temporaria) Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis , 2015, PloS one.

[57]  Y. Igarashi,et al.  Mycolic Acid-Containing Bacteria Induce Natural-Product Biosynthesis in Streptomyces Species , 2010, Applied and Environmental Microbiology.

[58]  Guinevere O U Wogan,et al.  Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians , 2013, Molecular ecology.

[59]  W. Wade,et al.  Strategies for culture of 'unculturable' bacteria. , 2010, FEMS microbiology letters.

[60]  J. W. Taylor,et al.  Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. , 2014, Environmental microbiology.

[61]  A. M. Memon,et al.  Probiotics and prebiotics associated with aquaculture: A review. , 2015, Fish & shellfish immunology.

[62]  M. Feldman,et al.  Large-scale reconstruction and phylogenetic analysis of metabolic environments , 2008, Proceedings of the National Academy of Sciences.

[63]  B. Foligné,et al.  Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches , 2015, Front. Microbiol..

[64]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[65]  A. Berlec Novel techniques and findings in the study of plant microbiota: search for plant probiotics. , 2012, Plant science : an international journal of experimental plant biology.

[66]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[67]  M. Watve,et al.  The 'K' selected oligophilic bacteria: a key to uncultured diversity? , 2000 .

[68]  F. Balloux,et al.  Collapse of Amphibian Communities Due to an Introduced Ranavirus , 2014, Current Biology.

[69]  K. Zamudio,et al.  MHC genotypes associate with resistance to a frog-killing fungus , 2011, Proceedings of the National Academy of Sciences.

[70]  R. Harris,et al.  Social Immunity in Amphibians: Evidence for Vertical Transmission of Innate Defenses , 2011 .

[71]  K. Zengler,et al.  Cultivating the uncultured , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Cavalieri,et al.  Mycobiota: micro-eukaryotes inhabiting our body as commensals or opportunistic pathogens , 2015 .

[73]  R. Alford,et al.  Screening bacterial metabolites for inhibitory effects against Batrachochytrium dendrobatidis using a spectrophotometric assay. , 2013, Diseases of aquatic organisms.

[74]  K. Pearson,et al.  DETERMINATION OF THE COEFFICIENT OF CORRELATION. , 1909, Science.

[75]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[76]  Anna Edlund,et al.  Bacteriophage and their potential roles in the human oral cavity , 2015, Journal of oral microbiology.

[77]  Rhys A. Farrer,et al.  Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage , 2011, Proceedings of the National Academy of Sciences.

[78]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[79]  L. Reinert,et al.  Immune Defenses against Batrachochytrium dendrobatidis, a Fungus Linked to Global Amphibian Declines, in the South African Clawed Frog, Xenopus laevis , 2010, Infection and Immunity.

[80]  R. Harris,et al.  Common Cutaneous Bacteria from the Eastern Red-Backed Salamander Can Inhibit Pathogenic Fungi , 2007, Copeia.

[81]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[82]  D. Woodhams,et al.  Hybrid advantage in skin peptide immune defenses of water frogs (Pelophylax esculentus) at risk from emerging pathogens. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[83]  Jesse R. Zaneveld,et al.  Human-associated microbial signatures: examining their predictive value. , 2011, Cell host & microbe.

[84]  T. N. Gallaher,et al.  Amphibian Chemical Defense: Antifungal Metabolites of the Microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus , 2008, Journal of Chemical Ecology.

[85]  Anne Marie Bakke,et al.  Prebiotics in aquaculture: a review , 2010 .

[86]  R. Knight,et al.  Supervised classification of human microbiota. , 2011, FEMS microbiology reviews.

[87]  R. Harris,et al.  Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus , 2015, Proceedings of the Royal Society B: Biological Sciences.

[88]  R. Harris,et al.  Synergistic Inhibition of the Lethal Fungal Pathogen Batrachochytrium dendrobatidis: The Combined Effect of Symbiotic Bacterial Metabolites and Antimicrobial Peptides of the Frog Rana muscosa , 2012, Journal of Chemical Ecology.

[89]  R. Knight,et al.  Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens , 2015 .

[90]  R. Alford,et al.  Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. , 2008, Ecology.

[91]  Scott Powell,et al.  Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes , 2014, Molecular ecology.

[92]  Rhys A. Farrer,et al.  Recent introduction of a chytrid fungus endangers Western Palearctic salamanders , 2014, Science.

[93]  Orkun S. Soyer,et al.  Evolutionary Systems Biology , 2012, Advances in Experimental Medicine and Biology.

[94]  Jennifer G. Laird,et al.  Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress , 2014, BMC Genomics.

[95]  T. Keitt,et al.  Resilience vs. historical contingency in microbial responses to environmental change. , 2015, Ecology letters.

[96]  C. Franklin,et al.  Skin sloughing rate increases with chytrid fungus infection load in a susceptible amphibian , 2015 .

[97]  Narendra Tuteja,et al.  Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity , 2014, Microbial Cell Factories.

[98]  Andreas Wilke,et al.  MIxS-BE: a MIxS extension defining a minimum information standard for sequence data from the built environment , 2013, The ISME Journal.

[99]  William A. Walters,et al.  From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome , 2012 .

[100]  L. K. Belden,et al.  Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis , 2015, Molecular ecology.

[101]  M. Desvaux,et al.  Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective , 2013, Front. Microbiol..

[102]  D. Caron,et al.  Marine bacterial, archaeal and protistan association networks reveal ecological linkages , 2011, The ISME Journal.

[103]  Elhanan Borenstein,et al.  Metagenomic systems biology and metabolic modeling of the human microbiome , 2014, Gut microbes.

[104]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[105]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[106]  Zhuofei Xu,et al.  Bioinformatic Approaches Reveal Metagenomic Characterization of Soil Microbial Community , 2014, PloS one.

[107]  Jonathan Friedman,et al.  Inferring Correlation Networks from Genomic Survey Data , 2012, PLoS Comput. Biol..

[108]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[109]  Ralf Tautenhahn,et al.  A view from above: cloud plots to visualize global metabolomic data. , 2013, Analytical chemistry.

[110]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[111]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[112]  D. Wake,et al.  Are we in the midst of the sixth mass extinction? A view from the world of amphibians , 2008, Proceedings of the National Academy of Sciences.

[113]  D. Underhill,et al.  The mycobiota: interactions between commensal fungi and the host immune system , 2014, Nature Reviews Immunology.

[114]  Jed A Fuhrman,et al.  Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California , 2011, The ISME Journal.

[115]  S. Khorram,et al.  Supervised Classification , 2018, Image Processing and Data Analysis with ERDAS IMAGINE®.

[116]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[117]  Atsushi Kawaguchi Multivariate Approach , 2022, Multivariate Analysis for Neuroimaging Data.

[118]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[119]  Graziella V. DiRenzo,et al.  More than Skin Deep: Functional Genomic Basis for Resistance to Amphibian Chytridiomycosis , 2014, Genome biology and evolution.

[120]  P. Hudson,et al.  Negative effects of changing temperature on amphibian immunity under field conditions , 2006 .

[121]  Ruth Ley,et al.  Unravelling the effects of the environment and host genotype on the gut microbiome , 2011, Nature Reviews Microbiology.

[122]  R. Alford,et al.  Hot bodies protect amphibians against chytrid infection in nature , 2013, Scientific Reports.

[123]  John M Eppley,et al.  Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities , 2011, Genome Biology.

[124]  A. Westermann,et al.  Dual RNA-seq of pathogen and host , 2012, Nature Reviews Microbiology.

[125]  M. Fisher,et al.  Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. , 2009, Annual review of microbiology.

[126]  R. Knight,et al.  The amphibian skin‐associated microbiome across species, space and life history stages , 2014, Molecular ecology.

[127]  R. Alford,et al.  Variation in Thermal Performance of a Widespread Pathogen, the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis , 2013, PloS one.

[128]  William A. Walters,et al.  Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity , 2014, Front. Microbiol..

[129]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[130]  D. Woodhams,et al.  Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses , 2012, BMC Veterinary Research.

[131]  E. Borenstein,et al.  Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. , 2014, Cell metabolism.

[132]  R. Harris,et al.  Towards a Better Understanding of the Use of Probiotics for Preventing Chytridiomycosis in Panamanian Golden Frogs , 2011, EcoHealth.

[133]  William W. Van Treuren,et al.  Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas) , 2015, The ISME Journal.

[134]  B. Scheele,et al.  Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation , 2015, Proceedings of the Royal Society B: Biological Sciences.

[135]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[136]  L. Reinert,et al.  Amphibian immune defenses against chytridiomycosis: impacts of changing environments. , 2011, Integrative and comparative biology.

[137]  S. Shen,et al.  The statistical analysis of compositional data , 1983 .

[138]  R. Harris,et al.  Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa , 2007 .

[139]  Duccio Cavalieri,et al.  Explaining Diversity in Metagenomic Datasets by Phylogenetic-Based Feature Weighting , 2015, PLoS Comput. Biol..

[140]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[141]  J. Brownstein,et al.  Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.

[142]  Noah Fierer,et al.  Using network analysis to explore co-occurrence patterns in soil microbial communities , 2011, The ISME Journal.

[143]  R. Knight,et al.  Microbiota restoration: natural and supplemented recovery of human microbial communities , 2011, Nature Reviews Microbiology.

[144]  M. Mancuso Probiotics in Aquaculture , 2014 .

[145]  Debojyoti Dutta,et al.  Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors , 2006, Bioinform..

[146]  K. Turner,et al.  Metatranscriptomics of the Human Oral Microbiome during Health and Disease , 2014, mBio.

[147]  Jun Wang,et al.  Distinct antimicrobial peptide expression determines host species-specific bacterial associations , 2013, Proceedings of the National Academy of Sciences.

[148]  A. M. Kilpatrick,et al.  Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome , 2015, PloS one.

[149]  L. Johnson,et al.  Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians , 2012, Ecology and evolution.

[150]  M. Schrope Sea star wasting , 2014, Proceedings of the National Academy of Sciences of the United States of America.

[151]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[152]  Susan P. Holmes,et al.  Waste Not , Want Not : Why Rarefying Microbiome Data is Inadmissible . October 1 , 2013 , 2013 .

[153]  Jizhong Zhou,et al.  Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2 , 2011, mBio.

[154]  M. Floch Probiotics and Prebiotics. , 2014, Gastroenterology & hepatology.

[155]  Elizabeth A. Grice,et al.  The skin microbiome , 2020, Nature.

[156]  J. Conlon Structural diversity and species distribution of host-defense peptides in frog skin secretions , 2011, Cellular and Molecular Life Sciences.

[157]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[158]  Sultan Imangaliyev,et al.  Personalized microbial network inference via co-regularized spectral clustering , 2015, 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[159]  Jacob A. Tennessen,et al.  Selection for Antimicrobial Peptide Diversity in Frogs Leads to Gene Duplication and Low Allelic Variation , 2007, Journal of Molecular Evolution.

[160]  Paul M. Ruegger,et al.  Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships , 2013, Microbiome.

[161]  C. V. Mering,et al.  Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice , 2011, The ISME Journal.

[162]  Alison E. Murray,et al.  Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility , 2008, Proceedings of the National Academy of Sciences.

[163]  Heather K. Allen,et al.  Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. , 2010, DNA and cell biology.

[164]  M. Bodinier,et al.  Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions , 2011, Journal of leukocyte biology.

[165]  M. Schembri,et al.  Bacterial adhesins: function and structure. , 2000, International journal of medical microbiology : IJMM.

[166]  R. Harris,et al.  The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus , 2009, Applied and Environmental Microbiology.

[167]  Natalia N. Ivanova,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium. , 2006, Nature Reviews Microbiology.

[168]  D. Wake,et al.  Averting a North American biodiversity crisis , 2015, Science.

[169]  R. Harris,et al.  Amphibian Pathogen Batrachochytrium dendrobatidis Is Inhibited by the Cutaneous Bacteria of Amphibian Species , 2006, EcoHealth.

[170]  R. Jensen,et al.  Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured , 2015, Applied and Environmental Microbiology.

[171]  R. Jensen,et al.  Amphibian skin may select for rare environmental microbes , 2014, The ISME Journal.

[172]  C. Franklin,et al.  Changes in cutaneous microbial abundance with sloughing: possible implications for infection and disease in amphibians. , 2012, Diseases of aquatic organisms.

[173]  Rob Knight,et al.  Supervised classification of microbiota mitigates mislabeling errors , 2011, The ISME Journal.

[174]  N. Moran,et al.  Molecular Interactions between Bacterial Symbionts and Their Hosts , 2006, Cell.

[175]  L. Ruiz,et al.  Omics for the study of probiotic microorganisms , 2013 .

[176]  B. Hammock,et al.  Mass spectrometry-based metabolomics. , 2007, Mass spectrometry reviews.

[177]  R. Knight,et al.  Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus) , 2013, The ISME Journal.

[178]  Alexander Statnikov,et al.  A comprehensive evaluation of multicategory classification methods for microbiomic data , 2013, Microbiome.

[179]  R. Harris,et al.  Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis , 2016, The ISME Journal.

[180]  P. Chaurand,et al.  Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. , 2009, Developmental and comparative immunology.

[181]  R. Fleischer,et al.  Conservation and divergence in the frog immunome: pyrosequencing and de novo assembly of immune tissue transcriptomes. , 2014, Gene.

[182]  P. Legendre,et al.  SPECIES ASSEMBLAGES AND INDICATOR SPECIES:THE NEED FOR A FLEXIBLE ASYMMETRICAL APPROACH , 1997 .

[183]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[184]  Mingyao Yang,et al.  The bacterial communities associated with fecal types and body weight of rex rabbits , 2015, Scientific Reports.

[185]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[186]  R. Preziosi,et al.  Amphibian symbiotic bacteria do not show universal ability to inhibit growth of the global pandemic lineage of Batrachochytrium dendrobatidis Running title : Variation in bacterial inhibition across Bd GPL isolates , 2016 .

[187]  K. Storey,et al.  Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration , 2014, Journal of Experimental Biology.

[188]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[189]  Feng Luo,et al.  Molecular ecological network analyses , 2012, BMC Bioinformatics.

[190]  D E Green,et al.  Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[191]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[192]  R. Knight,et al.  Molecular cartography of the human skin surface in 3D , 2015, Proceedings of the National Academy of Sciences.

[193]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[194]  S. Gervasi,et al.  Differential Host Susceptibility to Batrachochytrium dendrobatidis, an Emerging Amphibian Pathogen , 2011, Conservation biology : the journal of the Society for Conservation Biology.

[195]  Samuel C Forster,et al.  Systematic discovery of probiotics , 2015, Nature Biotechnology.

[196]  C. Huttenhower,et al.  Sequencing and beyond: integrating molecular 'omics' for microbial community profiling , 2015, Nature Reviews Microbiology.

[197]  R. Harris,et al.  Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites , 2014, Front. Microbiol..

[198]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[199]  R. Preziosi,et al.  Amphibian Symbiotic Bacteria Do Not Show a Universal Ability To Inhibit Growth of the Global Panzootic Lineage of Batrachochytrium dendrobatidis , 2015, Applied and Environmental Microbiology.

[200]  Heinrich Kaspar M. Josie Lategan Lewis Gibson Aditya Kesarcodi-Watson Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes , 2011 .

[201]  R. Knight,et al.  Interacting Symbionts and Immunity in the Amphibian Skin Mucosome Predict Disease Risk and Probiotic Effectiveness , 2014, PloS one.

[202]  René Augustin,et al.  Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance , 2014, The ISME Journal.

[203]  R. Huey,et al.  Physiological Consequences of Habitat Selection , 1991, The American Naturalist.

[204]  Chris Sander,et al.  Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile , 2014, Nature.

[205]  S. Giovannoni,et al.  High-Throughput Methods for Culturing Microorganisms in Very-Low-Nutrient Media Yield Diverse New Marine Isolates , 2002, Applied and Environmental Microbiology.

[206]  S. Normark,et al.  Bacterial adhesins in host-microbe interactions. , 2009, Cell host & microbe.

[207]  E. Casamayor,et al.  Exploration of community traits as ecological markers in microbial metagenomes , 2012, Molecular ecology.