Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment

Clinical trials of topical ALA in photodynamic therapy (PDT) of basal cell carcinoma (BCC) show significant recurrence rates. Exogenous 5-aminolevulinic acid (ALA) is converted by intracellular enzymes to photoactive protoporphyrin IX (PpIX) in human tissues. PpIX generates cytotoxic singlet oxygen when irradiated with visible light in the 400–640 nm range. To evaluate variability and heterogeneity in PpIX production by tumors in such trials, and to assess the usefulness of PpIX for marking skin tumors, we measured PpIX fluorescence distribution in BCC after topical application of 20% ALA cream. ALA cream was applied under occlusion for periods ranging from 3 to 18 h (average 6.9 h, SD 4 h) to 16 BCCs. ALA conversion to PpIX in the BCCs was assessed by in vivo photography, ex vivo video fluorescence imaging, and fluorescence microscopy. External macroscopic PpIX fluorescence, as assessed by in vivo and ex vivo imaging, correlated with the clinical presence of BCC. Examination by a digital imaging fluorescence microscope revealed inter- and intratumor fluorescence variability and heterogeneity. PpIX fluorescence corresponding to full tomor thickness was found in six superficial and four nodular tumors, and partial-thickness fluorescence was observed in five nodular tumors, but no PpIX fluorescence was observed in some areas of superficial, nodular and infiltrating tumors. In a significant number of nodular and infiltrating BCCs, topical ALA appeared to provide little or no PpIX in deep tumor lobules. In addition, no selectivity for tumor tissue versus normal epidermis was seen. The grossly brighter external PpIX fluorescence over tumors may be due, therefore, to enhanced penetration through tumor-reactive stratum corneum and to the tumor thickness. The absence of reproducible fluorescence marking of nodular and infiltrating BCC suggests that topical ALA, at least under the present delivery protocols, may not be a reliable regimen for photodynamic treatment of these BCCs.

[1]  T J Dougherty,et al.  Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. , 1976, Cancer research.

[2]  Michele T. Cooper,et al.  Photodynamic therapy for the treatment of basal cell carcinoma. , 1992, Archives of dermatology.

[3]  E. Land,et al.  Effect of oxygen-enhanced intersystem crossing on the observed efficiency of formation of singlet oxygen , 1990 .

[4]  R. Anderson,et al.  Photodynamic therapy of nonmelanoma skin cancer with topical aminolevulinic acid: a clinical and histologic study. , 1995, Archives of dermatology.

[5]  K Svanberg,et al.  Photodynamic therapy of non‐melanoma malignant tumours of the skin using topical δ‐amino levulinic acid sensitization and laser irradiation , 1994, The British journal of dermatology.

[6]  M Landthaler,et al.  PENETRATION POTENCY OF TOPICAL APPLIED δ‐AMINOLEVULINIC ACID FOR PHOTODYNAMIC THERAPY OF BASAL CELL CARCINOMA * , 1994, Photochemistry and photobiology.

[7]  J C Kennedy,et al.  Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. , 1992, Journal of photochemistry and photobiology. B, Biology.

[8]  J. Kennedy,et al.  Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. , 1990, Journal of photochemistry and photobiology. B, Biology.

[9]  H Kerl,et al.  Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. An alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas? , 1993, Journal of the American Academy of Dermatology.

[10]  D. V. Ash,et al.  Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. , 1994, British Journal of Cancer.

[11]  R. S. Sinclair,et al.  Triplet states of porphyrin esters , 1980 .

[12]  R. Anderson,et al.  Photodynamic therapy of nonmelanoma skin cancer with topical aminolevulinic acid: a clinical and histologic study. , 1995, Archives of dermatology.