Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing

Abstract. We present the In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) that combines airborne in situ and lidar remote sensing data to retrieve vertical profiles of ambient aerosol optical, microphysical and hygroscopic properties, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. Here we apply the algorithm on data collected from the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during the ACEMED campaign in the Eastern Mediterranean. Vertical profiles of aerosol microphysical properties have been derived successfully for an aged smoke plume near the city of Thessaloniki with aerosol optical depth of  ∼  0.4 at 532 nm, single scattering albedos of  ∼  0.9–0.95 at 550 nm and typical lidar ratios for smoke of  ∼  60–80 sr at 532 nm. IRRA retrieves highly hydrated particles above land, with 55 and 80 % water volume content for ambient relative humidity of 80 and 90 %, respectively. The proposed methodology is highly advantageous for aerosol characterization in humid conditions and can find valuable applications in aerosol–cloud interaction schemes. Moreover, it can be used for the validation of active space-borne sensors, as is demonstrated here for the case of CALIPSO.

[1]  J. Strapp,et al.  Hydrated and Dried Aerosol-Size-Distribution Measurements from the Particle Measuring Systems FSSP-300 Probe and the Deiced PCASP-100X Probe , 1992 .

[2]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[3]  J. Ogren Comment on “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols” , 2010 .

[4]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[5]  R. Engelmann,et al.  Surface matters: limitations of CALIPSO V3 aerosol typing in coastal regions , 2014 .

[6]  W. R. Leaitch,et al.  The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation , 2010 .

[7]  G. Biskos,et al.  Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea , 2013 .

[8]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[9]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[10]  David M. Winker,et al.  Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products , 2004, SPIE Remote Sensing.

[11]  W. Malm,et al.  Estimates of aerosol species scattering characteristics as a function of relative humidity , 2001 .

[12]  Hugh Coe,et al.  Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree? , 2012 .

[13]  John H. Seinfeld,et al.  Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition , 1995 .

[14]  G. Biskos,et al.  New particle formation in the southern Aegean Sea during the Etesians: importance for CCN production and cloud droplet number , 2016 .

[15]  J. Ogren,et al.  Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer , 1998 .

[16]  Paola Formenti,et al.  Using aircraft measurements to determine the refractive index of Saharan dust during the DODO Experiments , 2009 .

[17]  Lars Schneidenbach,et al.  Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET , 2015 .

[18]  Mark J. Rood,et al.  Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization , 2005 .

[19]  I. Riipinen,et al.  New particle formation at a remote site in the eastern Mediterranean , 2012 .

[20]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[21]  L. M. Levin,et al.  Investigation of aerosol aspiration by photographing particle tracks under flash illumination , 1972 .

[22]  John H. Seinfeld,et al.  Global impacts of gas‐phase chemistry‐aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone , 2005 .

[23]  Y. Rudich,et al.  The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). , 2008, Faraday discussions.

[24]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[25]  Martin Wirth,et al.  Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006 , 2009 .

[26]  E. Highwood,et al.  Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction , 2010 .

[27]  I. Tang Chemical and size effects of hygroscopic aerosols on light scattering coefficients , 1996 .

[28]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[29]  R. Washington,et al.  Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign , 2012 .

[30]  A. Nenes,et al.  Atmospheric Chemistry and Physics Cloud Condensation Nuclei Measurements in the Marine Boundary Layer of the Eastern Mediterranean: Ccn Closure and Droplet Growth Kinetics , 2022 .

[31]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[32]  J. Haywood,et al.  Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign , 2016 .

[33]  Andreas Volz-Thomas,et al.  An improved fast-response vacuum-UV resonance fluorescence CO instrument , 1999 .

[34]  Sonia M. Kreidenweis,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning , 2012 .

[35]  A. Nenes,et al.  Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models , 1999 .

[36]  B. Holben,et al.  Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000 , 2003 .

[37]  Franco Marenco,et al.  Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume , 2011 .

[38]  Yinon Rudich,et al.  The density of humic acids and humic like substances ( HULIS ) from fresh and aged wood burning and pollution aerosol particles , 2018 .

[39]  Owen B. Toon,et al.  The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride , 1976 .

[40]  D. Tanré,et al.  Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm , 2013 .

[41]  Ya-Xiang Yuan,et al.  Recent advances in trust region algorithms , 2015, Mathematical Programming.

[42]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[43]  Larry C. Andrews,et al.  Absorption and Scattering , 2004, Introduction to Optical Microscopy.

[44]  C. Percival,et al.  Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires , 2013 .

[45]  Josef Gasteiger,et al.  Modelling lidar-relevant optical properties of complex mineral dust aerosols , 2011 .

[46]  J. Thornton,et al.  Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States , 2016 .

[47]  G. Biskos,et al.  Aerosol chemistry above an extended archipelago of the eastern Mediterranean basin during strong northern winds , 2015 .

[48]  R. Cohen,et al.  Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006 , 2007 .

[49]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[50]  U. Pöschl,et al.  Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake , 2011 .

[51]  G. Biskos,et al.  Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean , 2016, Atmospheric Chemistry and Physics.

[52]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[53]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[54]  Benjamin J. Mullins,et al.  Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method , 2008 .

[55]  M. Petters,et al.  Optical Particle Counter Measurement of Marine Aerosol Hygroscopic Growth , 2007 .

[56]  Philip B. Russell,et al.  Chemical apportionment of aerosol column optical depth off the mid‐Atlantic coast of the United States , 1997 .

[57]  Oleg Dubovik,et al.  Optimization of Numerical Inversion in Photopolarimetric Remote Sensing , 2004 .

[58]  A. Russell,et al.  High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years , 2016 .

[59]  R. Cotton,et al.  Performance of WVSS-II hygrometers on the FAAM research aircraft , 2014 .

[60]  Philippe Labazuy,et al.  Eyjafjallajökull ash concentrations derived from both lidar and modeling , 2012 .

[61]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[62]  A. Minikin,et al.  Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign , 2012 .

[63]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[64]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[65]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[66]  B. Anderson,et al.  Airborne observations of aerosol extinction by in situ and remote‐sensing techniques: Evaluation of particle hygroscopicity , 2013 .

[67]  A. Nenes,et al.  A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles , 2014 .

[68]  Gerhard Wotawa,et al.  The Lagrangian particle dispersion model FLEXPART-WRF version 3.1 , 2013 .

[69]  James D. Lee,et al.  Atmospheric composition and thermodynamic retrievals from the ARIES airborne TIR-FTS system – Part 2: Validation and results from aircraft campaigns , 2014 .

[70]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[71]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[72]  Tami C. Bond,et al.  Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols , 1999 .

[73]  A. Nenes,et al.  Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol , 2011 .

[74]  G. Biskos,et al.  Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign. , 2015, The Science of the total environment.

[75]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .

[76]  B. Turpin,et al.  Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies , 2011 .

[77]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[78]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[79]  Paul R. Lowe,et al.  The Computation of Saturation Vapor Pressure , 1974 .

[80]  P. Crutzen,et al.  Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases , 1990, Nature.

[81]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[82]  S. Pandis,et al.  Water content of aged aerosol , 2010 .

[83]  J. R. Hite,et al.  Fine-particle water and pH in the southeastern United States , 2014 .

[84]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[85]  Hugh Coe,et al.  Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis , 2003 .