Ultraviolet direct domain writing on 128° YX-cut LiNbO3: For SAW applications

Domain engineering 128° YX-cut lithium niobate crystals by ultraviolet direct-domain writing is reported. The evidence of the inverted domains were shown from both piezoresponse force microscopy and hydrofluoric acid etching.

[1]  A. Boes,et al.  Impact of domain depth on SAW generation by acoustic superlattice transducer in 128° YX-cut lithium niobate , 2013, 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM).

[2]  R. Eason,et al.  Light‐mediated ferroelectric domain engineering and micro‐structuring of lithium niobate crystals , 2012 .

[3]  E. Soergel Piezoresponse force microscopy (PFM) , 2011 .

[4]  K. Buse,et al.  Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser , 2011 .

[5]  Yan-Feng Chen,et al.  Bulk acoustic wave delay line in acoustic superlattice , 2010 .

[6]  Sergei V. Kalinin,et al.  Piezoresponse Force Microscopy , 2009, Microscopy Today.

[7]  S. Benchabane,et al.  Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes , 2009 .

[8]  R. Eason,et al.  Depth resolution of piezoresponse force microscopy , 2009, 0905.2209.

[9]  R. Eason,et al.  Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. , 2008, Optics express.

[10]  V. Gopalan,et al.  The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals , 1998 .

[11]  Shinichiro Sonoda,et al.  Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate , 1997 .

[12]  H. Shimizu,et al.  Local domain inversion in ferroelectric crystals and its application to piezoelectric devices , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[13]  Luis Arizmendi,et al.  Photonic applications of lithium niobate crystals , 2004 .