Optimizing atomic functions using compile-time information

Functions that invoke operations on multiple objects atomically are a useful extension of object-based parallel languages, such as Orca. This paper introduces atomic functions and shows how compile-time information can drive run-time optimizations of such functions.

[1]  Ken Kennedy,et al.  Fortran D Language Specification , 1990 .

[2]  Geoffrey C. Fox,et al.  Supporting irregular distributions using data-parallel languages , 1995, IEEE Parallel Distributed Technol. Syst. Appl..

[3]  David E. Culler,et al.  A case for NOW (networks of workstation) , 1995, PODC '95.

[4]  Thomas R. Gross,et al.  Task Parallelism in a High Performance Fortran Framework , 1994, IEEE Parallel & Distributed Technology: Systems & Applications.

[5]  Andrew S. Grimshaw,et al.  Easy-to-use object-oriented parallel processing with Mentat , 1993, Computer.

[6]  Henri E. Bal,et al.  Comparing kernel-space and user-space communication protocols on Amoeba , 1995, Proceedings of 15th International Conference on Distributed Computing Systems.

[7]  Jerome A. Feldman,et al.  Programming Distributed Systems , 1978, ACM Annual Conference.

[8]  Robbert van Renesse,et al.  Experiences with the Amoeba distributed operating system , 1990, CACM.

[9]  Henri E. Bal,et al.  Panda: a portable platform to support parallel programming languages , 1993 .

[10]  Monica S. Lam,et al.  Jade: a high-level, machine-independent language for parallel programming , 1993, Computer.

[11]  Henri E. Bal,et al.  Orca: A Language For Parallel Programming of Distributed Systems , 1992, IEEE Trans. Software Eng..