Introduction to Online Optimization

[1]  Eric Moulines,et al.  Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning , 2011, NIPS.

[2]  Sham Kakade,et al.  An Optimal Algorithm for Linear Bandits , 2011, ArXiv.

[3]  Gábor Lugosi,et al.  Minimax Policies for Combinatorial Prediction Games , 2011, COLT.

[4]  Elad Hazan The convex optimization approach to regret minimization , 2011 .

[5]  Hariharan Narayanan,et al.  Random Walk Approach to Regret Minimization , 2010, NIPS.

[6]  Robert E. Schapire,et al.  Non-Stochastic Bandit Slate Problems , 2010, NIPS.

[7]  Atsuyoshi Nakamura,et al.  Algorithms for Adversarial Bandit Problems with Multiple Plays , 2010, ALT.

[8]  Sébastien Bubeck Bandits Games and Clustering Foundations , 2010 .

[9]  Wouter M. Koolen,et al.  Hedging Structured Concepts , 2010, COLT.

[10]  Lin Xiao,et al.  Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback. , 2010, COLT 2010.

[11]  Jean-Yves Audibert,et al.  Regret Bounds and Minimax Policies under Partial Monitoring , 2010, J. Mach. Learn. Res..

[12]  A. Juditsky,et al.  5 First-Order Methods for Nonsmooth Convex Large-Scale Optimization , I : General Purpose Methods , 2010 .

[13]  Santosh S. Vempala,et al.  Recent Progress and Open Problems in Algorithmic Convex Geometry , 2010, FSTTCS.

[14]  A. Juditsky 6 First-Order Methods for Nonsmooth Convex Large-Scale Optimization , II : Utilizing Problem ’ s Structure , 2010 .

[15]  Nicolò Cesa-Bianchi,et al.  Combinatorial Bandits , 2012, COLT.

[16]  Jean-Yves Audibert,et al.  Minimax Policies for Adversarial and Stochastic Bandits. , 2009, COLT 2009.

[17]  Arnak S. Dalalyan,et al.  Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity , 2008, Machine Learning.

[18]  Manfred K. Warmuth,et al.  Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension , 2008 .

[19]  Elad Hazan,et al.  Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization , 2008, COLT.

[20]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[21]  Thomas P. Hayes,et al.  The Price of Bandit Information for Online Optimization , 2007, NIPS.

[22]  Manfred K. Warmuth,et al.  Learning Permutations with Exponential Weights , 2007, COLT.

[23]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[24]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[25]  H. Robbins A Stochastic Approximation Method , 1951 .

[26]  Magyar Tud The On-Line Shortest Path Problem Under Partial Monitoring , 2007 .

[27]  Shai Shalev-Shwartz,et al.  Online learning: theory, algorithms and applications (למידה מקוונת.) , 2007 .

[28]  Santosh S. Vempala,et al.  Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[29]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  Adam Tauman Kalai,et al.  Online convex optimization in the bandit setting: gradient descent without a gradient , 2004, SODA '05.

[32]  Avrim Blum,et al.  Online Geometric Optimization in the Bandit Setting Against an Adaptive Adversary , 2004, COLT.

[33]  Baruch Awerbuch,et al.  Adaptive routing with end-to-end feedback: distributed learning and geometric approaches , 2004, STOC '04.

[34]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[35]  Manfred K. Warmuth,et al.  Relative Loss Bounds for Multidimensional Regression Problems , 1997, Machine Learning.

[36]  Mark Herbster,et al.  Tracking the Best Expert , 1995, Machine Learning.

[37]  Santosh S. Vempala,et al.  Efficient algorithms for online decision problems , 2005, J. Comput. Syst. Sci..

[38]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[39]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[40]  Y. Freund,et al.  The non-stochastic multi-armed bandit problem , 2001 .

[41]  Santosh S. Vempala,et al.  Efficient algorithms for universal portfolios , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[42]  Dale Schuurmans,et al.  General Convergence Results for Linear Discriminant Updates , 1997, COLT '97.

[43]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[44]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[45]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[46]  Vladimir Vovk,et al.  Aggregating strategies , 1990, COLT '90.

[47]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[48]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.

[49]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[50]  N. Z. Shor Application of generalized gradient descent in block programming , 1967 .

[51]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[52]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 2022 .