Anderson Localization for Electric Quantum Walks and Skew-Shift CMV Matrices

We consider the spectral and dynamical properties of one-dimensional quantum walks placed into homogenous electric fields according to a discrete version of the minimal coupling principle. We show that for all irrational fields the absolutely continuous spectrum of these systems is empty, and prove Anderson localization for almost all (irrational) fields. This result closes a gap which was left open in the original study of electric quantum walks: a spectral and dynamical characterization of these systems for typical fields. Additionally, we derive an analytic and explicit expression for the Lyapunov exponent of this model. Making use of a connection between quantum walks and CMV matrices our result implies Anderson localization for CMV matrices with a particular choice of skew-shift Verblunsky coefficients as well as for quasi-periodic unitary band matrices.

[1]  F. A. Grunbaum,et al.  Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.

[2]  Kai Tao Non-perturbative positive Lyapunov exponent of Schr\"odinger equations and applications to potentials given by skew-shift , 2017 .

[3]  Dieter Meschede,et al.  Molecular binding in interacting quantum walks , 2012 .

[4]  H. Krüger The spectrum of skew-shift Schrödinger operators contains intervals , 2012 .

[5]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[6]  Density of States and Thouless Formula for Random Unitary Band Matrices , 2003, math-ph/0303047.

[7]  M. J. Cantero,et al.  The CGMV method for quantum walks , 2012, Quantum Inf. Process..

[8]  Helge Krueger Orthogonal Polynomials on the Unit Circle with Verblunsky Coefficients defined by the Skew-Shift , 2011, 1111.4019.

[9]  Volkher B. Scholz,et al.  Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations , 2012, Quantum Inf. Process..

[10]  D. Damanik,et al.  Anderson localization for quasi-periodic CMV matrices and quantum walks , 2018, Journal of Functional Analysis.

[11]  D. Damanik,et al.  Characterizations of Uniform Hyperbolicity and Spectra of CMV Matrices , 2014, 1409.6259.

[12]  A. H. Werner,et al.  Quantum walks in external gauge fields , 2018, Journal of Mathematical Physics.

[13]  Jean Bourgain,et al.  Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .

[14]  D. Damanik,et al.  Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent , 2017, Transactions of the American Mathematical Society.

[15]  A. H. Werner,et al.  Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases , 2019, Communications in mathematical physics.

[16]  Propagation of quantum walks in electric fields. , 2013, Physical review letters.

[17]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[18]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[19]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[20]  Alain Joye,et al.  Dynamical Localization of Quantum Walks in Random Environments , 2010, 1004.4130.

[21]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[22]  A. Schreiber,et al.  A 2D Quantum Walk Simulation of Two-Particle Dynamics , 2012, Science.

[23]  A. H. Werner,et al.  The Topological Classification of One-Dimensional Symmetric Quantum Walks , 2016, Annales Henri Poincaré.

[24]  Noah Linden,et al.  Inhomogeneous quantum walks , 2009, 0906.3692.

[25]  B. Simon,et al.  Duality and singular continuous spectrum in the almost Mathieu equation , 1997 .

[26]  Darren C. Ong,et al.  Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator , 2015, 1512.07641.

[27]  Svante Janson,et al.  Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Alain Joye,et al.  Dynamical Localization for Unitary Anderson Models , 2009, 0903.0028.

[29]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[30]  Alain Joye,et al.  Random Time-Dependent Quantum Walks , 2010, 1010.4006.

[31]  A formula with some applications to the theory of Lyapunov exponents , 2001, math/0104103.

[32]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[33]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[34]  Alain Joye,et al.  Dynamical localization for d-dimensional random quantum walks , 2012, Quantum Inf. Process..

[35]  Michael Goldstein,et al.  Holder continuity of the integrated density of states for quasi-periodic Schrodinger equations and averages of shifts of subharmonic functions , 2001 .

[37]  Orthogonal Polynomials on the Unit Circle , 2020, Encyclopedia of Special Functions: The Askey-Bateman Project.

[38]  R. Werner,et al.  Eigenvalue measurement of topologically protected edge states in split-step quantum walks , 2018, New Journal of Physics.

[39]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[40]  On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.

[41]  R. Portugal Quantum Walks and Search Algorithms , 2013 .

[42]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[43]  A. H. Werner,et al.  Bulk-edge correspondence of one-dimensional quantum walks , 2015, 1502.02592.

[44]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[45]  Alain Joye,et al.  Spectral Analysis of Unitary Band Matrices , 2003 .

[46]  Propagation and spectral properties of quantum walks in electric fields , 2013, 1302.2081.

[47]  S. D. Berry,et al.  Two-particle quantum walks: Entanglement and graph isomorphism testing , 2011 .

[48]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[49]  Volkher B. Scholz,et al.  Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.

[50]  A. H. Werner,et al.  Complete homotopy invariants for translation invariant symmetric quantum walks on a chain , 2018, 1804.04520.

[51]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[52]  J. Bourgain,et al.  Anderson Localization for Schrödinger Operators on ℤ with Potentials Given by the Skew–Shift , 2001 .

[53]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[54]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[55]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[56]  Albert H. Werner,et al.  Asymptotic evolution of quantum walks with random coin , 2010, 1009.2019.

[57]  J. You,et al.  Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycle with weak Liouville frequency , 2013, Ergodic Theory and Dynamical Systems.

[58]  A Schreiber,et al.  Decoherence and disorder in quantum walks: from ballistic spread to localization. , 2011, Physical review letters.

[59]  Cesar R. de Oliveira,et al.  A Floquet Operator with Purely Point Spectrum and Energy Instability , 2007 .

[60]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .