Anderson Localization for Electric Quantum Walks and Skew-Shift CMV Matrices
暂无分享,去创建一个
[1] F. A. Grunbaum,et al. Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.
[2] Kai Tao. Non-perturbative positive Lyapunov exponent of Schr\"odinger equations and applications to potentials given by skew-shift , 2017 .
[3] Dieter Meschede,et al. Molecular binding in interacting quantum walks , 2012 .
[4] H. Krüger. The spectrum of skew-shift Schrödinger operators contains intervals , 2012 .
[5] J Glueckert,et al. Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.
[6] Density of States and Thouless Formula for Random Unitary Band Matrices , 2003, math-ph/0303047.
[7] M. J. Cantero,et al. The CGMV method for quantum walks , 2012, Quantum Inf. Process..
[8] Helge Krueger. Orthogonal Polynomials on the Unit Circle with Verblunsky Coefficients defined by the Skew-Shift , 2011, 1111.4019.
[9] Volkher B. Scholz,et al. Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations , 2012, Quantum Inf. Process..
[10] D. Damanik,et al. Anderson localization for quasi-periodic CMV matrices and quantum walks , 2018, Journal of Functional Analysis.
[11] D. Damanik,et al. Characterizations of Uniform Hyperbolicity and Spectra of CMV Matrices , 2014, 1409.6259.
[12] A. H. Werner,et al. Quantum walks in external gauge fields , 2018, Journal of Mathematical Physics.
[13] Jean Bourgain,et al. Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .
[14] D. Damanik,et al. Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent , 2017, Transactions of the American Mathematical Society.
[15] A. H. Werner,et al. Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases , 2019, Communications in mathematical physics.
[16] Propagation of quantum walks in electric fields. , 2013, Physical review letters.
[17] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[18] Dieter Meschede,et al. Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.
[19] A Schreiber,et al. Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.
[20] Alain Joye,et al. Dynamical Localization of Quantum Walks in Random Environments , 2010, 1004.4130.
[21] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[22] A. Schreiber,et al. A 2D Quantum Walk Simulation of Two-Particle Dynamics , 2012, Science.
[23] A. H. Werner,et al. The Topological Classification of One-Dimensional Symmetric Quantum Walks , 2016, Annales Henri Poincaré.
[24] Noah Linden,et al. Inhomogeneous quantum walks , 2009, 0906.3692.
[25] B. Simon,et al. Duality and singular continuous spectrum in the almost Mathieu equation , 1997 .
[26] Darren C. Ong,et al. Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator , 2015, 1512.07641.
[27] Svante Janson,et al. Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Alain Joye,et al. Dynamical Localization for Unitary Anderson Models , 2009, 0903.0028.
[29] Andrew M. Childs,et al. Universal computation by quantum walk. , 2008, Physical review letters.
[30] Alain Joye,et al. Random Time-Dependent Quantum Walks , 2010, 1010.4006.
[31] A formula with some applications to the theory of Lyapunov exponents , 2001, math/0104103.
[32] R. Blatt,et al. Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.
[33] G. Vallone,et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.
[34] Alain Joye,et al. Dynamical localization for d-dimensional random quantum walks , 2012, Quantum Inf. Process..
[35] Michael Goldstein,et al. Holder continuity of the integrated density of states for quasi-periodic Schrodinger equations and averages of shifts of subharmonic functions , 2001 .
[37] Orthogonal Polynomials on the Unit Circle , 2020, Encyclopedia of Special Functions: The Askey-Bateman Project.
[38] R. Werner,et al. Eigenvalue measurement of topologically protected edge states in split-step quantum walks , 2018, New Journal of Physics.
[39] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[40] On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.
[41] R. Portugal. Quantum Walks and Search Algorithms , 2013 .
[42] Andris Ambainis,et al. One-dimensional quantum walks , 2001, STOC '01.
[43] A. H. Werner,et al. Bulk-edge correspondence of one-dimensional quantum walks , 2015, 1502.02592.
[44] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[45] Alain Joye,et al. Spectral Analysis of Unitary Band Matrices , 2003 .
[46] Propagation and spectral properties of quantum walks in electric fields , 2013, 1302.2081.
[47] S. D. Berry,et al. Two-particle quantum walks: Entanglement and graph isomorphism testing , 2011 .
[48] Andris Ambainis,et al. QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.
[49] Volkher B. Scholz,et al. Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.
[50] A. H. Werner,et al. Complete homotopy invariants for translation invariant symmetric quantum walks on a chain , 2018, 1804.04520.
[51] Y. Sinai. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .
[52] J. Bourgain,et al. Anderson Localization for Schrödinger Operators on ℤ with Potentials Given by the Skew–Shift , 2001 .
[53] R. Laflamme,et al. Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.
[54] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[55] Daniel A. Spielman,et al. Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.
[56] Albert H. Werner,et al. Asymptotic evolution of quantum walks with random coin , 2010, 1009.2019.
[57] J. You,et al. Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycle with weak Liouville frequency , 2013, Ergodic Theory and Dynamical Systems.
[58] A Schreiber,et al. Decoherence and disorder in quantum walks: from ballistic spread to localization. , 2011, Physical review letters.
[59] Cesar R. de Oliveira,et al. A Floquet Operator with Purely Point Spectrum and Energy Instability , 2007 .
[60] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .