Machine Learning for Functional Brain Mapping

[1]  Y. Lamarre,et al.  Unmyelinated tactile afferents signal touch and project to insular cortex , 2002, Nature Neuroscience.

[2]  S LaConte,et al.  Distributed Representation of Single Touches in Somatosensory and Visual Cortex , 2009, NeuroImage.

[3]  R. Turner,et al.  Functional magnetic resonance imaging of the human brain: data acquisition and analysis , 1998, Experimental Brain Research.

[4]  U. Norrsell,et al.  Spatial cues serving the tactile directional sensibility of the human forearm. , 1994, The Journal of physiology.

[5]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[6]  D. B. De Araujo,et al.  Quantitative evaluation of hemodynamic response after hypercapnia among different brain territories by fMRI , 2008, NeuroImage.

[7]  G. Muehllehner,et al.  Positron emission tomography , 2006, Physics in medicine and biology.

[8]  Johan Wessberg,et al.  Somatotopic Organization of Gentle Touch Processing in the Posterior Insular Cortex , 2009, The Journal of Neuroscience.

[9]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[10]  A M Dale,et al.  Event-related functional MRI: past, present, and future. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Johan Wessberg,et al.  A system of unmyelinated afferents for innocuous mechanoreception in the human skin , 1993, Brain Research.

[12]  A. Craig How do you feel? Interoception: the sense of the physiological condition of the body , 2002, Nature Reviews Neuroscience.

[13]  Karl J. Friston,et al.  Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses , 2007, NeuroImage.

[14]  P R Burgess,et al.  Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. , 1971, Journal of neurophysiology.

[15]  Johan Wessberg,et al.  Unmyelinated tactile afferents have opposite effects on insular and somatosensory cortical processing , 2008, Neuroscience Letters.

[16]  S. C. Gandevia,et al.  Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: A single-trial fMRI study , 2007, Pain.

[17]  H. Garavan,et al.  Pattern recognition approach to the detection of single-trial event-related functional magnetic resonance images , 2004, Medical and Biological Engineering and Computing.

[18]  Nikolaus Kriegeskorte,et al.  Combining the tools: Activation- and information-based fMRI analysis , 2007, NeuroImage.

[19]  John-Dylan Haynes,et al.  Odor quality coding and categorization in human posterior piriform cortex , 2009, Nature Neuroscience.

[20]  Vaidehi S. Natu,et al.  Category-Specific Cortical Activity Precedes Retrieval During Memory Search , 2005, Science.

[21]  Johan Wessberg,et al.  Particle Swarm Feature Selection for fMRI Pattern Classification , 2009, BIOSIGNALS.

[22]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[23]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[24]  C. Sherrington,et al.  On the Regulation of the Blood‐supply of the Brain , 1890, The Journal of physiology.

[25]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[26]  B. Edin Cutaneous afferents provide information about knee joint movements in humans , 2001, The Journal of physiology.

[27]  J. Wessberg,et al.  Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. , 1999, Journal of neurophysiology.

[28]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003 .

[29]  J. Wessberg,et al.  Functional role of unmyelinated tactile afferents in human hairy skin: sympathetic response and perceptual localization , 2007, Experimental Brain Research.

[30]  Johan Wessberg,et al.  An Evolutionary Approach to Multivariate Feature Selection for FMRI Pattern Analysis , 2008, BIOSIGNALS.

[31]  M Nordin,et al.  Low‐threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. , 1990, The Journal of physiology.

[32]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[33]  Janaina Mourão Miranda,et al.  The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data , 2006, NeuroImage.

[34]  Jonathan C. W. Brooks,et al.  Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging , 2005, NeuroImage.

[35]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[36]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.

[37]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[38]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[39]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[40]  M. Bushnell,et al.  A thalamic nucleus specific for pain and temperature sensation , 1994, Nature.

[41]  Rna Henson,et al.  Analysis of fMRI time series: Linear Time-Invariant models, event-related fMRI and optimal experimental design , 2003 .

[42]  P. Goldman-Rakic,et al.  Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. , 1997, Journal of neurophysiology.

[43]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[44]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[45]  T. Naidich,et al.  The insula: anatomic study and MR imaging display at 1.5 T. , 2004, AJNR. American journal of neuroradiology.

[46]  Carlos E. Thomaz,et al.  Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction , 2009, NeuroImage.

[47]  E. Perl,et al.  Primate cutaneous sensory units with unmyelinated (C) afferent fibers. , 1977, Journal of neurophysiology.

[48]  Sterling C. Johnson,et al.  Anteroposterior somatotopy of innocuous cooling activation focus in human dorsal posterior insular cortex. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[49]  Johan Wessberg,et al.  An Evolutionary Approach to the Identification of Informative Voxel Clusters for Brain State Discrimination , 2008, IEEE Journal of Selected Topics in Signal Processing.

[50]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[51]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[52]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[53]  Sanjoy Dasgupta,et al.  Adaptive Control Processes , 2010, Encyclopedia of Machine Learning and Data Mining.

[54]  Noël Staeren,et al.  Sound Categories Are Represented as Distributed Patterns in the Human Auditory Cortex , 2009, Current Biology.

[55]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[56]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[57]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[58]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[59]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[60]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[61]  A. Asbury,et al.  The acute sensory neuronopathy syndrome: A distinct clinical entity , 1980, Annals of neurology.

[62]  D. Norris Principles of magnetic resonance assessment of brain function , 2006, Journal of magnetic resonance imaging : JMRI.

[63]  S. Small,et al.  AN INTRODUCTION TO FUNCTIONAL MAGNETIC RESONANCE IMAGING , 1999 .

[64]  Arthur Gretton,et al.  Comparison of Pattern Recognition Methods in Classifying High-resolution Bold Signals Obtained at High Magnetic Field in Monkeys , 2008 .

[65]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[66]  J. M. Ritchie,et al.  Non‐medullated fibres in the saphenous nerve which signal touch , 1957, The Journal of physiology.

[67]  Rainer Goebel,et al.  "Who" Is Saying "What"? Brain-Based Decoding of Human Voice and Speech , 2008, Science.

[68]  Y. Lamarre,et al.  Postural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivation. , 1995, Canadian journal of physiology and pharmacology.

[69]  John A. Detre,et al.  Support vector machine learning-based fMRI data group analysis , 2007, NeuroImage.

[70]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[71]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[72]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[74]  E. Reiman,et al.  Thermosensory activation of insular cortex , 2000, Nature Neuroscience.

[75]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[76]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[78]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[79]  J. Wessberg,et al.  Coding of pleasant touch by unmyelinated afferents in humans , 2009, Nature Neuroscience.

[80]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[81]  R. Cox,et al.  Event‐related fMRI contrast when using constant interstimulus interval: Theory and experiment , 2000, Magnetic resonance in medicine.