Rational design of redox mediators for advanced Li–O2 batteries

[1]  Linda F. Nazar,et al.  A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries , 2015, ACS central science.

[2]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[3]  Tao Zhang,et al.  The water catalysis at oxygen cathodes of lithium–oxygen cells , 2015, Nature Communications.

[4]  C. Jin,et al.  MnOx decorated CeO2 nanorods as cathode catalyst for rechargeable lithium–air batteries , 2015 .

[5]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[6]  Jürgen Janek,et al.  TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. , 2014, Journal of the American Chemical Society.

[7]  Lu Ma,et al.  Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging , 2014, Nature Communications.

[8]  Yuhan Chen,et al.  Effects of heteroatoms of tetracene and pentacene derivatives on their stability and singlet fission. , 2014, The journal of physical chemistry. A.

[9]  Heinz Pitsch,et al.  Solvent Degradation in Nonaqueous Li-O2 Batteries: Oxidative Stability versus H-Abstraction. , 2014, The journal of physical chemistry letters.

[10]  Dan Sun,et al.  A solution-phase bifunctional catalyst for lithium-oxygen batteries. , 2014, Journal of the American Chemical Society.

[11]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[12]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[13]  H. Pitsch,et al.  Identifying Descriptors for Solvent Stability in Nonaqueous Li-O2 Batteries. , 2014, The journal of physical chemistry letters.

[14]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[15]  Dan Xu,et al.  Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries , 2013, Nature Communications.

[16]  Zhiyu Wang,et al.  Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries , 2013 .

[17]  Sung Ho Song,et al.  Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. , 2013, Nano letters.

[18]  Yongyao Xia,et al.  Li-O₂ batteries: an agent for change. , 2013, Nature chemistry.

[19]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[20]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[21]  Hee-Dae Lim,et al.  Enhanced Power and Rechargeability of a Li−O2 Battery Based on a Hierarchical‐Fibril CNT Electrode , 2013, Advanced materials.

[22]  V. Bryantsev Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C–H acids in dimethyl sulfoxide , 2013 .

[23]  Jun Chen,et al.  Lithium-air batteries: Something from nothing. , 2012, Nature chemistry.

[24]  D. Bethune,et al.  Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. , 2012, The journal of physical chemistry letters.

[25]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[26]  K. Kang,et al.  The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. , 2012, Chemical communications.

[27]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[28]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[29]  Gregory V. Chase,et al.  The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries , 2012 .

[30]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[31]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[32]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[33]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[34]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[35]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[36]  G. Gritzner Standard electrode potentials of M+|M couples in non-aqueous solvents (molecular liquids) , 2010 .

[37]  P. Saalfrank,et al.  (TD-)DFT calculation of vibrational and vibronic spectra of riboflavin in solution. , 2010, The journal of physical chemistry. B.

[38]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[39]  K. Thygesen,et al.  Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces , 2009, 0910.5304.

[40]  Wei Zhao,et al.  Unexpected photooxidation of H-bonded tetracene. , 2008, Organic letters.

[41]  L. Cederbaum,et al.  Theoretical Aspects of Ionization Potentials and Photoelectron Spectroscopy: A Green's Function Approach , 2007 .

[42]  K. Takimiya,et al.  Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors , 2007 .

[43]  C. Joachim,et al.  Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. , 2005, Physical review letters.

[44]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[45]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[46]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[47]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[48]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[49]  Johnson Pd,et al.  Inverse-photoemission studies of adsorbed diatomic molecules. , 1987 .

[50]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[51]  M. K. Kalinowski,et al.  Redox behaviour of phenothiazine and phenazine in organic solvents , 1983 .

[52]  K. Houk,et al.  Photoelectron spectroscopy of N-aryl cyclic amines. Variable conformations and relationships to gas- and solution-phase basicities , 1982 .

[53]  T. Baer,et al.  Thermochemistry and dissociation dynamics of state-selected C4H8O2+ ions. 1. 1,4-Dioxane , 1982 .

[54]  J. Ferraris,et al.  Photoelectron and electronic absorption spectra of tetrathiafulvalene and related compounds , 1975 .

[55]  R. Egdell,et al.  Photoelectron spectra of substituted benzenes , 1975 .

[56]  J. Maier Photoelectron Spectroscopy of peri‐Amino Naphthalenes , 1974 .

[57]  L. Karlsson,et al.  Electron Spectroscopy of Open‐Shell Systems: Spectra of Ni(C5H5)2, Fe(C5H5)2, Mn(C5H5)2, and Cr(C5H5)2 , 1972 .

[58]  R. Nelson,et al.  Anodic oxidation of 5,10-dihydro-5,10-dimethylphenazine , 1966 .

[59]  R. Foster Ionization Potentials of Electron Donors , 1959, Nature.

[60]  Toshio Nakayama,et al.  Ionization Potentials of Some Molecules , 1957 .

[61]  Frederick Albert Matsen IV,et al.  Electron Affinities, Methyl Affinities, and Ionization Energies of Condensed Ring Aromatic Hydrocarbons , 1956 .