The Quantum Supremacy Tsirelson Inequality

A leading proposal for verifying near-term quantum supremacy experiments on noisy random quantum circuits is linear cross-entropy benchmarking. For a quantum circuit $C$ on $n$ qubits and a sample $z \in \{0,1\}^n$, the benchmark involves computing $|\langle z|C|0^n \rangle|^2$, i.e. the probability of measuring $z$ from the output distribution of $C$ on the all zeros input. Under a strong conjecture about the classical hardness of estimating output probabilities of quantum circuits, no polynomial-time classical algorithm given $C$ can output a string $z$ such that $|\langle z|C|0^n\rangle|^2$ is substantially larger than $\frac{1}{2^n}$ (Aaronson and Gunn, 2019). On the other hand, for a random quantum circuit $C$, sampling $z$ from the output distribution of $C$ achieves $|\langle z|C|0^n\rangle|^2 \approx \frac{2}{2^n}$ on average (Arute et al., 2019). In analogy with the Tsirelson inequality from quantum nonlocal correlations, we ask: can a polynomial-time quantum algorithm do substantially better than $\frac{2}{2^n}$? We study this question in the query (or black box) model, where the quantum algorithm is given oracle access to $C$. We show that, for any $\varepsilon \ge \frac{1}{\mathrm{poly}(n)}$, outputting a sample $z$ such that $|\langle z|C|0^n\rangle|^2 \ge \frac{2 + \varepsilon}{2^n}$ on average requires at least $\Omega\left(\frac{2^{n/4}}{\mathrm{poly}(n)}\right)$ queries to $C$, but not more than $O\left(2^{n/3}\right)$ queries to $C$, if $C$ is either a Haar-random $n$-qubit unitary, or a canonical state preparation oracle for a Haar-random $n$-qubit state. We also show that when $C$ samples from the Fourier distribution of a random Boolean function, the naive algorithm that samples from $C$ is the optimal 1-query algorithm for maximizing $|\langle z|C|0^n\rangle|^2$ on average.

[1]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[2]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[3]  A. Harrow,et al.  Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates , 2018, Communications in Mathematical Physics.

[4]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[5]  L. Prokhorov On the Einstein-Podolsky-Rosen paradox , 2001 .

[6]  R. Cleve,et al.  Consequences and limits of nonlocal strategies , 2004 .

[7]  SCOTT AARONSON,et al.  On the Classical Hardness of Spoofing Linear Cross-Entropy Benchmarking , 2019, ArXiv.

[8]  Ansis Rosmanis,et al.  Tight Quantum Lower Bound for Approximate Counting with Quantum States , 2020, 2002.06879.

[9]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[10]  N. L. Johnson,et al.  Urn models and their application : an approach to modern discrete probability theory , 1978 .

[11]  Andris Ambainis,et al.  Understanding Quantum Algorithms via Query Complexity , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[12]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[13]  Maris Ozols,et al.  Hamiltonian simulation with optimal sample complexity , 2016, npj Quantum Information.

[14]  Aleksandrs Belovs Variations on Quantum Adversary , 2015 .

[15]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[16]  A. Rényi On the theory of order statistics , 1953 .

[17]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[18]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[19]  Gilles Brassard,et al.  Quantum cryptanalysis of hash and claw-free functions , 1997, SIGA.

[20]  Scott Aaronson,et al.  Quantum lower bounds for approximate counting via laurent polynomials , 2019, Electron. Colloquium Comput. Complex..

[21]  Troy Lee,et al.  Quantum Query Complexity of State Conversion , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[22]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[23]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[24]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[25]  Justin Thaler,et al.  Dual lower bounds for approximate degree and Markov-Bernstein inequalities , 2013, Inf. Comput..

[26]  Andris Ambainis,et al.  Quantum Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[27]  Andris Ambainis,et al.  Symmetry-Assisted Adversaries for Quantum State Generation , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[28]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[29]  Ben Reichardt,et al.  Reflections for quantum query algorithms , 2010, SODA '11.

[30]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[31]  D. A. Sprott Urn Models and Their Application—An Approach to Modern Discrete Probability Theory , 1978 .

[32]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[33]  Peter Høyer,et al.  Consequences and limits of nonlocal strategies , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..