Fourier transform light scattering of inhomogeneous and dynamic structures.

Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical microscopy, holography, and light scattering for studying inhomogeneous and dynamic media. In FTLS the optical phase and amplitude of a coherent image field are quantified and propagated numerically to the scattering plane. Because it detects all the scattered angles (spatial frequencies) simultaneously in each point of the image, FTLS can be regarded as the spatial equivalent of Fourier transform infrared spectroscopy, where all the temporal frequencies are detected at each moment in time.

[1]  P. Wiltzius,et al.  Dynamic light scattering with a CCD camera , 1993 .

[2]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .

[3]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[4]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[5]  Marzio Giglio,et al.  A schlieren method for ultra-low–angle light scattering measurements , 2003 .

[6]  R. Dzakpasu,et al.  Dynamic light scattering microscopy. A novel optical technique to image submicroscopic motions. II: Experimental applications. , 2004, Biophysical journal.

[7]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[8]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[9]  D. Sampson,et al.  Synthetic aperture fourier holographic optical microscopy. , 2006, Physical review letters.

[10]  Gabriel Popescu,et al.  Microrheology of red blood cell membranes using dynamic scattering microscopy. , 2007, Optics express.

[11]  D. Weitz,et al.  Diffusing wave spectroscopy. , 1988, Physical review letters.

[12]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[13]  Andreas Höpe,et al.  Angular distribution of light scattered by single biological cells and oriented particle agglomerates. , 2003, Applied optics.

[14]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[15]  Denis Wirtz,et al.  Particle Tracking Microrheology of Complex Fluids , 1997 .

[16]  Stefan Andersson-Engels,et al.  Numerical simulations of light scattering by red blood cells , 2005, IEEE Transactions on Biomedical Engineering.

[17]  B. Berne,et al.  Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , 1976 .

[18]  Gabriel Popescu,et al.  Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection. , 2006, Physical review letters.

[19]  Marzio Giglio,et al.  Use of dynamic schlieren interferometry to study fluctuations during free diffusion. , 2006, Applied optics.

[20]  Giglio,et al.  Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r) , 2000, Physical review letters.

[21]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[22]  W. Choi,et al.  Confocal diffraction phase microscopy of live cells. , 2008, Optics letters.

[23]  Roberto Cerbino,et al.  New trends in light scattering , 2007 .

[24]  D A Weitz,et al.  Two-point microrheology of inhomogeneous soft materials. , 2000, Physical review letters.