Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators.

To enhance the performance of luminescent solar concentrator (LSC), there is an increased need to search novel emissive materials with broad absorption and large Stokes shifts. I-III-VI colloidal CuInS2 and CuInSe2 based nanocrystals, which exhibit strong photoluminescence emissions in the visible to near infrared region with large Stokes shifts, are expected to improve performance in luminescent solar concentrator applications. In this work, the performance of CuInS(Se)2 quantum dots in simple planar LSC is evaluated by applying Monte-Carlo ray-trace simulation. A systematic parameters study was conducted to optimize the performance. An optimized photon concentration ratio of 0.34 for CuInS2 nanocrystals and 1.25 for CuInSe2 nanocrystals doping LSC are obtained from the simulation. The results demonstrated that CuInSe2 based nanocrystals are particularly interesting for luminescent solar concentrator applications, especially to combine with low price Si solar cells.

[1]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[2]  A. Goetzberger Fluorescent solar energy collectors: Operating conditions with diffuse light , 1978 .

[3]  M. Kennedy Monte-Carlo Ray-Trace Modelling of Quantum Dot Solar Concentrators , 2009 .

[4]  D. Gamelin,et al.  Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators. , 2015, Chemical communications.

[5]  B. Richards,et al.  Advanced Material Concepts for Luminescent Solar Concentrators , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Michael Cada,et al.  Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells. , 2014, Optics express.

[7]  D. F. Kelley,et al.  Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles , 2011 .

[8]  Jun Zhang,et al.  Luminescent solar concentrator employing rare earth complex with zero self-absorption loss , 2011 .

[9]  Roland Winston,et al.  Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators , 2010 .

[10]  Wilfried van Sark,et al.  Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots , 2013 .

[11]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[12]  Haizheng Zhong,et al.  Red emissive CuInS2-based nanocrystals: a potential phosphor for warm white light-emitting diodes. , 2013, Optics express.

[13]  Sue A. Carter,et al.  Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting , 2007 .

[14]  Sheldon T. Bailey,et al.  Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators , 2009 .

[15]  D. Gamelin,et al.  Nanocrystals for luminescent solar concentrators. , 2015, Nano letters.

[16]  Zhan'ao Tan,et al.  Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance , 2012 .

[17]  Stanko Tomić,et al.  Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators. , 2012, Physical chemistry chemical physics : PCCP.

[18]  Keith W. J. Barnham,et al.  Quantum-dot concentrator and thermodynamic model for the global redshift , 2000 .

[19]  Zhenghong Lu,et al.  Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence , 2011 .

[20]  F. Dimroth,et al.  Increasing the efficiency of fluorescent concentrator systems , 2009 .

[21]  R. Ruffo,et al.  High Stokes shift perylene dyes for luminescent solar concentrators. , 2013, Chemical communications.

[22]  Michael G Debije,et al.  Promising fluorescent dye for solar energy conversion based on a perylene perinone. , 2011, Applied optics.

[23]  N. J. Ekins-Daukes,et al.  Quantum dot solar concentrators , 2004 .

[24]  Sergio Brovelli,et al.  Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix , 2014, Nature Photonics.

[25]  Seth B. Darling,et al.  Optimizing luminescent solar concentrator design , 2012 .

[26]  Alexey Y. Koposov,et al.  Simple yet Versatile Synthesis of CuInSexS2–x Quantum Dots for Sunlight Harvesting , 2014 .

[27]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[28]  Renata Reisfeld,et al.  Luminescent solar concentrators for energy conversion , 1982 .

[29]  M. Fayer,et al.  Luminescent solar concentrators and the reabsorption problem. , 1981, Applied optics.

[30]  Haizheng Zhong,et al.  Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. , 2012, The journal of physical chemistry letters.

[31]  F. Purcell-Milton,et al.  Quantum dots for Luminescent Solar Concentrators , 2012 .

[32]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[33]  Wilfried van Sark,et al.  Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators , 2011 .

[34]  John Doran,et al.  Enhanced Quantum Dot Emission for Luminescent Solar Concentrators Using Plasmonic Interaction , 2012 .

[35]  Daniel R. Gamelin,et al.  Zero-reabsorption doped-nanocrystal luminescent solar concentrators. , 2014, ACS nano.

[36]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[37]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .