Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.

Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al2O3, TiO2, ZnO, HfO2, and ZrO2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al2O3 or HfO2 provided the highest level of initial corrosion protection, but films of HfO2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO2 or ZrO2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.

[1]  M. Ritala,et al.  The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings , 2016 .

[2]  M. Ritala,et al.  Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings , 2016 .

[3]  M. Ritala,et al.  Interfacial native oxide effects on the corrosion protection of copper coated with ALD alumina , 2016 .

[4]  A. Lanzutti,et al.  Long term performance of atomic layer deposition coatings for corrosion protection of stainless steel , 2015 .

[5]  Bo Bao,et al.  Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition. , 2015, ACS applied materials & interfaces.

[6]  Xinchun Lu,et al.  Ultra-thin Al2O3 films grown by atomic layer deposition for corrosion protection of copper , 2014 .

[7]  Xinchun Lu,et al.  Use of electrochemical measurements to investigate the porosity of ultra-thin Al2O3 films prepared by atomic layer deposition , 2014 .

[8]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[9]  T. Jackson,et al.  pH-controlled selective etching of Al2O3 over ZnO. , 2014, ACS applied materials & interfaces.

[10]  W. Meng,et al.  Experimental investigation of Cu-based, double-layered, microchannel heat exchangers , 2013 .

[11]  A. Armanious,et al.  Alternative methods for copper corrosion studies in household plumbing systems , 2012 .

[12]  Mikko Ritala,et al.  Electrochemical and time-of-flight secondary ion mass spectrometry analysis of ultra-thin metal oxide (Al2O3 and Ta2O5) coatings deposited by atomic layer deposition on stainless steel , 2011 .

[13]  Y. C. Lee,et al.  Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. , 2011, ACS applied materials & interfaces.

[14]  M. Ritala,et al.  Failure mechanism of thin Al2O3 coatings grown by atomic layer deposition for corrosion protection of carbon steel , 2011 .

[15]  A. V. van Duin,et al.  Atomistic insights into aqueous corrosion of copper. , 2011, The Journal of chemical physics.

[16]  M. Ritala,et al.  Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: Surface and electrochemical analysis , 2011 .

[17]  Se Stephen Potts,et al.  Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection , 2011 .

[18]  A. Lanzutti,et al.  Corrosion protection of AISI 316 stainless steel by ALD alumina/titania nanometric coatings , 2011 .

[19]  Seung-Hwan Lee,et al.  Investigation of pitting corrosion of a copper tube in a heating system , 2010 .

[20]  G. V. Loganathan,et al.  Copper Pinhole Failures: Plumbing Susceptibility and Management , 2009 .

[21]  X. Zhong,et al.  Preparation and corrosion resistance studies of zirconia coating on fluorinated AZ91D magnesium alloy , 2008 .

[22]  C. Shan,et al.  Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition , 2008 .

[23]  C. Shan,et al.  Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition , 2008 .

[24]  Hong Jiang,et al.  Annealing of Al2O3 thin films prepared by atomic layer deposition , 2007 .

[25]  M. Valcarce,et al.  A comparative analysis of copper and brass surface films in contact with tap water , 2006 .

[26]  F. Brizuela,et al.  Anodically grown films on copper and copper–nickel alloys in slightly alkaline solutions , 2006 .

[27]  P. Patil,et al.  Poly(o-anisidine) coatings on copper: synthesis, characterization and evaluation of corrosion protection performance , 2004 .

[28]  H. Imai,et al.  Effect of free carbon dioxide on corrosion behavior of copper in simulated water , 2003 .

[29]  A. Matthews,et al.  An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour , 2003 .

[30]  Roy G. Gordon,et al.  Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films , 2003 .

[31]  K. Kukli,et al.  Atomic Layer Deposition of Hafnium Dioxide Films from Hafnium Tetrakis(ethylmethylamide) and Water , 2002 .

[32]  H. Takenouti,et al.  Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5 M NaCl , 2002 .

[33]  S. Pehkonen,et al.  Effect of Specific Water Quality Parameters on Copper Corrosion , 2002 .

[34]  G. Wallace,et al.  Electroactive conducting polymers for corrosion control , 2002 .

[35]  Haibin Li,et al.  Corrosion protection of mild steel by zirconia sol-gel coatings , 2001 .

[36]  M. Edwards,et al.  Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water. , 2001, Water research.

[37]  Olof Forsén,et al.  Atomic layer deposited thin films for corrosion protection , 1999 .

[38]  W. Badawy,et al.  The electrochemical behaviour of naturally passivated hafnium in aqueous solutions of different pH , 1999 .

[39]  K. L. Tan,et al.  Corrosion Mechanisms and Products of Copper in Aqueous Solutions at Various pH Values , 1997 .

[40]  Makoto Konagai,et al.  Atomic layer deposition of ZnO transparent conducting oxides , 1997 .

[41]  H. Yasuda,et al.  Effect of plasma polymer deposition methods on copper corrosion protection , 1996 .

[42]  V. Macagno,et al.  Characterization of hafnium anodic oxide films: An AC impedance investigation , 1995 .

[43]  I. Poulios,et al.  The corrosion and photocorrosion of zinc and zinc oxide coatings , 1995 .

[44]  J. Aarik,et al.  Morphology and structure of TiO2 thin films grown by atomic layer deposition , 1995 .

[45]  H. Nishihara,et al.  Self‐Assembled Layers of Alkanethiols on Copper for Protection Against Corrosion , 1993 .

[46]  B. Wood,et al.  Aluminum and alumina coatings on copper by chemical vapor deposition in fluidized bed reactors , 1992 .

[47]  B. Wood,et al.  Titanium-based coatings on copper by chemical vapor deposition in fluidized bed reactors , 1991 .

[48]  G. Frankel,et al.  Copper Corrosion With and Without Inhibitors. , 1991 .

[49]  Suk Won Cha,et al.  Properties of nanostructured undoped ZrO2 thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells , 2016 .

[50]  M. Ritala,et al.  Electrochemical and Surface Analysis of the Corrosion Protection of Copper by Nanometer-Thick Alumina Coatings Prepared by Atomic Layer Deposition , 2015 .