Anoxic LTP sheds light on the multiple facets of NMDA receptors

[1]  D. Attwell,et al.  Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms , 1994, Trends in Neurosciences.

[2]  P. Bregestovski,et al.  Kainate-induced inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons. , 1994, Journal of neurophysiology.

[3]  A. Cowan,et al.  The early events of oxygen and glucose deprivation: setting the scene for neuronal death? , 1994, Trends in Neurosciences.

[4]  I. Módy,et al.  Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase , 1994, Nature.

[5]  Yu Tian Wang,et al.  Regulation of NMDA receptors by tyrosine kinases and phosphatases , 1994, Nature.

[6]  B. Orser,et al.  Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A , 1994, Nature.

[7]  D. Kullmann Amplitude fluctuations of , 1994, Neuron.

[8]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[9]  Y. Ben-Ari,et al.  Hippocampal inhibitory interneurons are functionally disconnected from excitatory inputs by anoxia. , 1993, Journal of Neurophysiology.

[10]  R. Nicoll,et al.  Evidence for all‐or‐none regulation of neurotransmitter release: implications for long‐term potentiation. , 1993, The Journal of physiology.

[11]  C. Hammond,et al.  A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons. , 1993, Journal of neurophysiology.

[12]  Charles Tator,et al.  Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo , 1993, Neuron.

[13]  P. Seeburg The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels. , 1993, Trends in pharmacological sciences.

[14]  O. Garaschuk,et al.  Glutamate induces long-term increase in the frequency of single N-methyl-d-aspartate channel openings in hippocampal CA1 neurons examined in situ , 1993, Neuroscience.

[15]  Christian Rosenmund,et al.  Calcium-induced actin depolymerization reduces NMDA channel activity , 1993, Neuron.

[16]  M. Roisin,et al.  Effect of potassium channel modulators on the release of glutamate induced by ischaemic-like conditions in rat hippocampal slices , 1993, Neuroscience Letters.

[17]  Y. Ben-Ari,et al.  The NMDA receptor contributes to anoxic aglcemic induced irreversible inhibition of synaptic transmission , 1993, Brain Research.

[18]  M. Lerner,et al.  Evidence that the large loss of glutathione observed in ischemia/reperfusion of the small intestine is not due to oxidation to glutathione disulfide. , 1993, Free radical biology & medicine.

[19]  A. Katchman,et al.  Site of synaptic depression during hypoxia: a patch-clamp analysis. , 1993, Journal of neurophysiology.

[20]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[21]  Y. Ben-Ari,et al.  Biochemical correlates of long-term potentiation in hippocampal synapses. , 1993, International review of neurobiology.

[22]  B. McNaughton The mechanism of expression of long-term enhancement of hippocampal synapses: current issues and theoretical implications. , 1993, Annual review of physiology.

[23]  S. Nakanishi Molecular diversity of glutamate receptors and implications for brain function. , 1992, Science.

[24]  Y. Ben-Ari,et al.  Protein kinase C modulation of NMDA currents: an important link for LTP induction , 1992, Trends in Neurosciences.

[25]  K. I. Kang,et al.  Increase in Specific Proteins and mRNAs Following Transient Anoxia‐Aglycaemia in Rat CA1 Hippocampal Slices , 1992, The European journal of neuroscience.

[26]  H. Wigström,et al.  The Relative Contribution of NMDA Receptor Channels in the Expression of Long‐term Potentiation in the Hippocampal CA1 Region , 1992, The European journal of neuroscience.

[27]  E. Aizenman,et al.  The action of CGS-19755 on the redox enhancement of NMDA toxicity in rat cortical neurons in vitro , 1992, Brain Research.

[28]  G. Barrionuevo,et al.  Potassium-induced long-term potentiation in rat hippocampal slices , 1992, Brain Research.

[29]  K. Fukunaga,et al.  Regional and Temporal Alterations in Ca2+/Calmodulin‐Dependent Protein Kinase II and Calcineurin in the Hippocampus of Rat Brain After Transient Forebrain Ischemia , 1992, Journal of neurochemistry.

[30]  Li Chen,et al.  Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation , 1992, Nature.

[31]  Y. Ben‐Ari,et al.  Developmental and regional differences in the vulnerability of rat hippocampal slices to lack of glucose , 1992, Neuroscience.

[32]  G. Barrionuevo,et al.  Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD. , 1992, Journal of neurophysiology.

[33]  T. Soderling,et al.  Ischemia‐Induced Loss of Brain Calcium/Calmodulin‐Dependent Protein Kinase II , 1992, Journal of neurochemistry.

[34]  D. Attwell,et al.  Potentiation of NMDA receptor currents by arachidonic acid , 1992, Nature.

[35]  R. Busto,et al.  Comparative Effect of Transient Global Ischemia on Extracellular Levels of Glutamate, Glycine, and γ‐Aminobutyric Acid in Vulnerable and Nonvulnerable Brain Regions in the Rat , 1991, Journal of neurochemistry.

[36]  M. Roisin,et al.  A new method for the measurement of endogenous transmitter release in localized regions of hippocampal slices , 1991, Journal of Neuroscience Methods.

[37]  Y. Ben-Ari,et al.  Novel form of long-term potentiation produced by a K+channel blocker in the hippocampus , 1991, Nature.

[38]  K. Krnjević,et al.  Mechanisms underlying anoxic hyperpolarization of hippocampal neurons. , 1990, Canadian journal of physiology and pharmacology.

[39]  T. Wieloch,et al.  Protein kinase C is translocated to cell membranes during cerebral ischemia , 1990, Neuroscience Letters.

[40]  Y. Ben-Ari,et al.  Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus , 1990, Trends in Neurosciences.

[41]  S. Cull-Candy,et al.  Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons , 1990, Nature.

[42]  Gary Lynch,et al.  Anoxia reveals a vulnerable period in the development of long-term potentiation , 1990, Brain Research.

[43]  Y. Ben-Ari,et al.  Galanin and Glibenclamide Modulate the Anoxic Release of Glutamate in Rat CA3 Hippocampal Neurons , 1990, The European journal of neuroscience.

[44]  D. Choi,et al.  The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. , 1990, Annual review of neuroscience.

[45]  M. Roisin,et al.  Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids , 1989, Neuroscience.

[46]  J. Nadler,et al.  Postischemic synaptic physiology in area CA1 of the gerbil hippocampus studied in vitro , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Y. Ben-Ari,et al.  Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. , 1989, Journal of neurophysiology.

[48]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[49]  K. Krnjević,et al.  Hypoxic changes in hippocampal neurons. , 1989, Journal of neurophysiology.

[50]  T. Lanthorn,et al.  Experimental ischemia induces a persistent depolarization blocked by decreased calcium and NMDA antagonists , 1989, Neuroscience Letters.

[51]  K. Abe,et al.  Extracellular accumulation of glutamate in the hippocampus induced by ischemia is not calcium dependent — In vitro and in vivo evidence , 1989, Neuroscience Letters.

[52]  F. Plum,et al.  Delayed hippocampal damage in humans following cardiorespiratory arrest , 1987, Neurology.

[53]  E. Cherubini,et al.  Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide , 1987, Nature.

[54]  S. Rothman,et al.  Blockade of excitatory amino acid receptors protects anoxic hippocampal slices , 1987, Neuroscience.

[55]  H. Higashi,et al.  Effects of hypoxia on rat hippocampal neurones in vitro. , 1987, The Journal of physiology.

[56]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[57]  K. Kogure,et al.  Mechanism of Arachidonic Acid Liberation During Ischemia in Gerbil Cerebral Cortex , 1987, Journal of neurochemistry.

[58]  L. Squire,et al.  Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  M. Reivich,et al.  Cerebral glucose metabolism during the recovery period after ischemia--its relationship to NADH-fluorescence, blood flow, EcoG and histology. , 1986, Stroke.

[60]  H. Benveniste,et al.  Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral Microdialysis , 1984, Journal of neurochemistry.

[61]  J. Passonneau,et al.  An in vitro model of ischemia: metabolic and electrical alterations in the hippocampal slice , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[63]  P. Lipton,et al.  Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice , 1982, The Journal of physiology.

[64]  J. Hounsgaard,et al.  Anoxia increases potassium conductance in hippocampal nerve cells. , 1982, Acta physiologica Scandinavica.

[65]  W. Pulsinelli,et al.  Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia , 1982, Annals of neurology.

[66]  T. Dunwiddie Age-Related Differences in the in vitro Rat Hippocampus , 1981 .