In situ modification of LiMn3/4Fe1/4PO4/C cathode realized by hierarchical porous α-LiAlO2 as channel for lithium-ion batteries

[1]  Shuting Yang,et al.  Simple synthesis of a hierarchical LiMn0.8Fe0.2PO4/C cathode by investigation of iron sources for lithium-ion batteries , 2022, RSC advances.

[2]  Shao‐hua Luo,et al.  Investigation on Structural and Electrochemical Properties of Olivine-Structured LiMn1-xFexPO4/C Cathode Materials Based on First-Principles Calculation , 2021, Journal of The Electrochemical Society.

[3]  Zhen Zhu,et al.  Mussel-inspired polydopamine-assisted uniform coating of Li+ conductive LiAlO2 on nickel-rich LiNi0.8Co0.1Mn0.1O2 for high-performance Li-ion batteries , 2021, Ceramics International.

[4]  Jia-Na Lin,et al.  Metal-organic framework-derived LiFePO4 cathode encapsulated in O,F-codoped carbon matrix towards superior lithium storage , 2021, Nano Energy.

[5]  R. Jose,et al.  Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review , 2021 .

[6]  Z. Bakenov,et al.  Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review , 2021 .

[7]  C. Felser,et al.  All topological bands of all nonmagnetic stoichiometric materials , 2021, Science.

[8]  M. Winter,et al.  Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells , 2021, Journal of Materials Chemistry A.

[9]  Xianhua Hou,et al.  First-Principles Investigation on Electrochemical Performance of Na-Doped LiNi1/3Co1/3Mn1/3O2 , 2021, Frontiers in Physics.

[10]  Jun Zhang,et al.  Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery , 2020 .

[11]  Jason M. Munro,et al.  An improved symmetry-based approach to reciprocal space path selection in band structure calculations , 2020, npj Computational Materials.

[12]  K. Persson,et al.  Evaluation of Amorphous Oxide Coatings for High-voltage Li-ion Battery Applications using a First-Principles Framework. , 2020, ACS applied materials & interfaces.

[13]  E. Thauer,et al.  Anisotropic ionic conductivity of LiMn1−Fe PO4 (0 ≤ x ≤ 1) single crystals , 2020 .

[14]  Tianxi Liu,et al.  Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient , 2020 .

[15]  Zhi Gao,et al.  Self-templating preparation and electrochemical performance of LiMnPO4 hollow microspheres , 2019, Journal of Alloys and Compounds.

[16]  C. Felser,et al.  A complete catalogue of high-quality topological materials , 2019, Nature.

[17]  F. Pan,et al.  Ab initio identification of the Li-rich phase in LiFePO4. , 2018, Physical chemistry chemical physics : PCCP.

[18]  F. Pan,et al.  Self-Assembly of Antisite Defectless nano-LiFePO4 @C/Reduced Graphene Oxide Microspheres for High-Performance Lithium-Ion Batteries. , 2018, ChemSusChem.

[19]  P. He,et al.  Three-Dimensional Honeycomb-Structural LiAlO2-Modified LiMnPO4 Composite with Superior High Rate Capability as Li-Ion Battery Cathodes. , 2018, ACS applied materials & interfaces.

[20]  Heng Liu,et al.  CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries , 2018 .

[21]  Z. Wen,et al.  3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries , 2017 .

[22]  G. Wen,et al.  Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries , 2015 .

[23]  J. Shim,et al.  Fast ultrasound-assisted synthesis of Li 2 MnSiO 4 nanoparticles for a lithium-ion battery , 2015 .

[24]  Jingjing Xu,et al.  High performance porous LiMnPO4 nanoflakes: synthesis from a novel nanosheet precursor , 2015 .

[25]  Lirong Zheng,et al.  Hybridization and pore engineering for achieving high-performance lithium storage of carbide as anode material , 2015 .

[26]  Yunlong Zhao,et al.  Hierarchical Carbon Decorated Li3V2(PO4)3 as a Bicontinuous Cathode with High‐Rate Capability and Broad Temperature Adaptability , 2014 .

[27]  H. Ming,et al.  Effect of vanadium doping on electrochemical performance of LiMnPO4 for lithium-ion batteries , 2014, Journal of Solid State Electrochemistry.

[28]  Yong Zhang,et al.  Tartaric acid assisted synthesis of Li2FeSiO4/C: Effect of carbon content on the electrochemical performance of Li2FeSiO4/C for lithium ion batteries , 2014 .

[29]  Yunhui Huang,et al.  High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole , 2013 .

[30]  Danna Qian,et al.  Recent progress in cathode materials research for advanced lithium ion batteries , 2012 .

[31]  Masao Yonemura,et al.  Synthesis, Crystal Structure, and Electrode Characteristics of LiMnPO4(OH) Cathode for Lithium Batteries. , 2012 .

[32]  Jagjit Nanda,et al.  Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2 , 2012 .

[33]  Jun Chen,et al.  Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries , 2011 .

[34]  Zhenguo Yang,et al.  LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. , 2010, Nano letters.

[35]  S. Hyun,et al.  Cost‐effective Synthesis of α‐LiAlO2 Powders for Molten Carbonate Fuel Cell Matrices , 2009 .

[36]  Xiaozhen Liao,et al.  Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte , 2008 .

[37]  Hui Cao,et al.  LiAlO-coated LiCoO as cathode material for lithium ion batteries , 2005 .

[38]  S. Dhoble,et al.  Synthesis, characterization and spectroscopic properties of some rare earth activated LiAlO2 phosphor , 2021 .

[39]  Shun-Li Shang,et al.  Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study , 2012 .