An Ensemble Approach for Compressive Sensing with Quantum Annealers

We leverage the idea of a statistical ensemble to improve the quality of quantum annealing based binary compressive sensing. Since executing quantum machine instructions on a quantum annealer can result in an excited state, rather than the ground state of the given Hamiltonian, we use different penalty parameters to generate multiple distinct quadratic unconstrained binary optimization (QUBO) functions whose ground state(s) represent a potential solution of the original problem. We then employ the attained samples from minimizing all corresponding (different) QUBOs to estimate the solution of the problem of binary compressive sensing. Our experiments, on a D-Wave 2000Q quantum processor, demonstrated that the proposed ensemble scheme is notably less sensitive to the calibration of the penalty parameter that controls the trade-off between the feasibility and sparsity of recoveries.

[1]  R. B. Deshmukh,et al.  A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications , 2018, IEEE Access.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[4]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[5]  Tim Finin,et al.  Reinforcement Quantum Annealing: A Hybrid Quantum Learning Automata , 2020, Scientific Reports.

[6]  Ramin Ayanzadeh,et al.  Leveraging Artificial Intelligence to Advance Problem-Solving with Quantum Annealers , 2020 .

[7]  Ramin Ayanzadeh,et al.  A Survey on Compressive Sensing: Classical Results and Recent Advancements , 2019, ArXiv.

[8]  Tim Finin,et al.  Quantum-Assisted Greedy Algorithms , 2019 .

[9]  Tim Finin,et al.  Multi-qubit correction for quantum annealers , 2020, Scientific Reports.

[10]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[11]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[12]  Timothy W. Finin,et al.  SAT-based Compressive Sensing , 2019, ArXiv.

[13]  R. Tibshirani,et al.  On the “degrees of freedom” of the lasso , 2007, 0712.0881.

[14]  Timothy W. Finin,et al.  Quantum Annealing Based Binary Compressive Sensing with Matrix Uncertainty , 2019, ArXiv.

[15]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[16]  John E. Dorband,et al.  A Method of Finding a Lower Energy Solution to a QUBO/Ising Objective Function , 2018, ArXiv.

[17]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[18]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[19]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.