Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems

With the advent of powerful computing and efficient computational algorithms, real-time solutions to constrained optimal control problems are nearing a reality. In this thesis, we develop a computationally efficient Nonlinear Trajectory Generation (NTG) algorithm and describe its software implementation to solve, in real-time, nonlinear optimal trajectory generation problems for constrained systems. NTG is a nonlinear trajectory generation software package that combines nonlinear control theory, B-spline basis functions, and nonlinear programming. We compare NTG with other numerical optimal control problem solution techniques, such as direct collocation, shooting, adjoints, and differential inclusions. We demonstrate the performance of NTG on the Caltech Ducted Fan testbed. Aggressive, constrained optimal control problems are solved in real-time for hover-to-hover, forward flight, and terrain avoidance test cases. Real-time trajectory generation results are shown for both the two-degree of freedom and receding horizon control designs. Further experimental demonstration is provided with the station-keeping, reconfiguration, and deconfiguration of micro-satellite formation with complex nonlinear constraints. Successful application of NTG in these cases demonstrates reliable real-time trajectory generation, even for highly nonlinear and non-convex systems. The results are among the first to apply receding horizon control techniques for agile flight in an experimental setting, using representative dynamics and computation.

[1]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[2]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[3]  Mark B. Milam,et al.  A NEW COMPUTATIONAL METHOD FOR OPTIMAL CONTROL OF A CLASS OF CONSTRAINED SYSTEMS GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS , 2002 .

[4]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy , 1991 .

[5]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[6]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[7]  Christopher G. Atkeson,et al.  Using Local Trajectory Optimizers to Speed Up Global Optimization in Dynamic Programming , 1993, NIPS.

[8]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[9]  A. V. D. Wegen Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs , 1989 .

[10]  John L. Junkins,et al.  Inverse dynamics approach for real-time determination of feasible aircraft reference trajectories , 1999 .

[11]  A. Isidori Nonlinear Control Systems , 1985 .

[12]  Eliot A. Cohen,et al.  New World Vistas: Air and Space Power for the 21st Century , 1996 .

[13]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[14]  Santosh Devasia,et al.  Approximated stable inversion for nonlinear systems with nonhyperbolic internal dynamics , 1999, IEEE Trans. Autom. Control..

[15]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[16]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[17]  Rebecca Castano,et al.  The Techsat-21 autonomous sciencecraft constellation , 2001 .

[18]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[19]  B. Conway,et al.  Collocation Versus Differential Inclusion in Direct Optimization , 1998 .

[20]  J. R. Carpenter,et al.  A preliminary investigation of decentralized control far satellite formations , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[21]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[22]  R. Murray,et al.  Flat systems, equivalence and trajectory generation , 2003 .

[23]  John R. Hauser,et al.  Applied receding horizon control of the Caltech Ducted Fan , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[24]  William B. Dunbar,et al.  MODEL PREDICTIVE CONTROL OF A THRUST-VECTORED FLIGHT CONTROL EXPERIMENT , 2002 .

[25]  R. Fletcher Practical Methods of Optimization , 1988 .

[26]  Sunil K. Agrawal,et al.  Trajectory Planning of Differentially Flat Systems with Dynamics and Inequalities , 2000 .

[27]  N. Faiz,et al.  Optimization of a Class of Nonlinear Dynamic Systems: New Efficient Method without Lagrange Multipliers , 1998 .

[28]  P. Gill,et al.  Large-scale SQP methods and their application in trajectory optimization , 1994 .

[29]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[30]  Mark B. Milam,et al.  Inversion Based Constrained Trajectory Optimization , 2001 .

[31]  A. Tits,et al.  Nonlinear Equality Constraints in Feasible Sequential Quadratic Programming , 1996 .

[32]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[33]  V. Chetverikov New Flatness Conditions for Control Systems , 2001 .

[34]  Zoran Popovic,et al.  Realistic modeling of bird flight animations , 2003, ACM Trans. Graph..

[35]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[36]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[37]  Muruhan Rathinam,et al.  Differentially flat nonlinear control systems , 1997 .

[38]  Srinivas R. Vadali,et al.  Fuel Optimal Control for Formation Flying of Satellites , 1999 .

[39]  Frank Allgöwer,et al.  An Introduction to Nonlinear Model Predictive Control , 2002 .

[40]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[41]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[42]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[43]  Jonathan P. How,et al.  Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility , 2003, Proceedings of the 2003 American Control Conference, 2003..

[44]  L. Petzold,et al.  COOPT — a software package for optimal control of large-scale differential—algebraic equation systems , 2001 .

[45]  van Nieuwstadt,et al.  Trajectory generation for nonlinear control systems , 1996 .

[46]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[47]  Eugene M. Cliff,et al.  GODDARD PROBLEM IN PRESENCE OF A DYNAMIC PRESSURE LIMIT , 1993 .

[48]  Hsi-Han Yeh,et al.  Nonlinear Tracking Control for Satellite Formations , 2002 .

[49]  Wolfgang Marquardt,et al.  Flatness and higher order differential model representations in dynamic optimization , 2002 .

[50]  Richard M. Murray,et al.  Constrained trajectory generation for micro-satellite formation flying , 2001, AIAA Guidance, Navigation, and Control Conference and Exhibit.

[51]  Richard M. Murray,et al.  A testbed for nonlinear flight control techniques: the Caltech ducted fan , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[52]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[53]  John L. Junkins,et al.  Spacecraft Formation Flying Control using Mean Orbit Elements , 2000 .

[54]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[55]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[56]  T. Veeraklaew,et al.  New Computational Framework for Trajectory Optimization of Higher-Order Dynamic Systems , 2001 .

[57]  Philippe Martin,et al.  AIRCRAFT CONTROL USING FLATNESS , 1996 .

[58]  Francis J. Doyle,et al.  Differential flatness based nonlinear predictive control of fed-batch bioreactors , 2001 .

[59]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[60]  Francis J. Doyle,et al.  Efficient optimization approaches to nonlinear model predictive control , 2003 .

[61]  Philip E. Gill,et al.  Practical optimization , 1981 .

[62]  B. Paden,et al.  Stable inversion of nonlinear non-minimum phase systems , 1996 .

[63]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[64]  Yaobin Chen,et al.  A new computational approach to solving a class of optimal control problems , 1993 .

[65]  Arthur E. Bryson,et al.  OPTIMAL PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS , 1963 .

[66]  Wolfgang Marquardt,et al.  Dynamic Optimization Based on Higher Order Differential Model Representations , 2000 .

[67]  John R. Hauser,et al.  Optimization based parameter identification of the Caltech ducted fan , 2003, Proceedings of the 2003 American Control Conference, 2003..

[68]  Edmund Mun Choong Kong,et al.  Optimal trajectories and orbit design for separated spacecraft interferrometry , 1998 .

[69]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[70]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[71]  John R. Hauser,et al.  Trajectory morphing for nonlinear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[72]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[73]  I. Michael Ross,et al.  Second Look at Approximating Differential Inclusions , 2001 .

[74]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[75]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[76]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[77]  Hsi-Han Yeh,et al.  Geometry and control of satellite formations , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[78]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[79]  M. Steinbach Optimal Motion Design Using Inverse Dynamics. , 1997 .

[80]  Nicolas Petit,et al.  Constrained Trajectory Generation for a Planar Missile , 2001 .

[81]  Jerrold E. Marsden,et al.  J2 DYNAMICS AND FORMATION FLIGHT , 2001 .

[82]  Gary J. Balas,et al.  Implementation of Online Control Customization within the Open Control Platform , 2003 .

[83]  Renjith R. Kumar,et al.  Fuel-Optimal Stationkeeping via Differential Inclusions , 1995 .

[84]  Hans Seywald,et al.  Trajectory optimization based on differential inclusion , 1994 .

[85]  L. Singh,et al.  Trajectory generation for a UAV in urban terrain, using nonlinear MPC , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[86]  Richard M. Murray,et al.  REAL-TIME CONSTRAINED TRAJECTORY GENERATION APPLIED TO A FLIGHT CONTROL EXPERIMENT , 2002 .

[87]  John R. Hauser,et al.  On the stability of unconstrained receding horizon control with a general terminal cost , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[88]  H. J. Pesch Real-time computation of feedback controls for constrained optimal control problems. Part 2: A correction method based on multiple shooting , 1989 .

[89]  Raymond J. Sedwick,et al.  A perturbative analysis of geopotential disturbances for satellite cluster formation flying , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[90]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[91]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .