Kumaraswamy control chart for monitoring double bounded environmental data

AbstractIn this paper, we propose a control chart for monitoring non-normal environmental data. Particularly, we are interested in double bounded data, such as rates and proportions. Control charts...

[1]  M. Falagas,et al.  Effect of meteorological variables on the incidence of respiratory tract infections. , 2008, Respiratory medicine.

[2]  Alan Winterbottom,et al.  Simple adjustments to improve control limits on attribute charts , 1993 .

[3]  Saddam Akber Abbasi,et al.  MDEWMA chart: an efficient and robust alternative to monitor process dispersion , 2013 .

[4]  Jung-Tai Chen,et al.  Design of cumulative count of conforming charts for high yield processes based on average number of items inspected , 2013 .

[5]  Carla Schwengber ten Caten,et al.  Beta control charts for monitoring fraction data , 2012, Expert Syst. Appl..

[6]  Fábio M. Bayer,et al.  Beta regression control chart for monitoring fractions and proportions , 2018, Comput. Ind. Eng..

[7]  Christian Paroissin,et al.  New control chart for monitoring and classification of environmental data , 2016 .

[8]  Silvia Joekes,et al.  Extending a double sampling control chart for non-conforming proportion in high quality processes to the case of small samples , 2015 .

[9]  Arjun K. Gupta,et al.  Handbook of beta distribution and its applications , 2004 .

[10]  Yi-Hsien Huang,et al.  The effect of the individual chart with variable control limits on the river pollution monitoring , 2013 .

[11]  Peder Wolkoff Indoor air humidity, air quality, and health - An overview. , 2018, International journal of hygiene and environmental health.

[12]  Control Charts for Environmental Data , 1992 .

[13]  Chi-Hyuck Jun,et al.  A new attribute control chart using multiple dependent state sampling , 2015 .

[14]  Amitava Mukherjee,et al.  Design and implementation issues for a class of distribution-free Phase II EWMA exceedance control charts , 2017, Int. J. Prod. Res..

[15]  Fabrizio Ruggeri,et al.  A criterion for environmental assessment using Birnbaum–Saunders attribute control charts , 2015 .

[16]  Muhammad Azam,et al.  A control chart for an exponential distribution using multiple dependent state sampling , 2015 .

[17]  Myoung-Jin Kim,et al.  Number of Replications Required in Control Chart Monte Carlo Simulation Studies , 2007, Commun. Stat. Simul. Comput..

[18]  Linda Lee Ho,et al.  Control charts to monitor rates and proportions , 2018, Qual. Reliab. Eng. Int..

[19]  A. L. L. Silveira,et al.  Problems of modern urban drainage in developing countries. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[20]  T. Sterling,et al.  Indirect health effects of relative humidity in indoor environments. , 1986, Environmental health perspectives.

[21]  A De Vries,et al.  Application of statistical process control charts to monitor changes in animal production systems. , 2010, Journal of animal science.

[22]  A. Gove,et al.  Control charts for improved decisions in environmental management: a case study of catchment water supply in south-west Western Australia , 2013 .

[23]  Artur J. Lemonte Improved point estimation for the Kumaraswamy distribution , 2011 .

[24]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[25]  Philippe Castagliola,et al.  Optimal Designs of the Variable Sample Size X¯ Chart Based on Median Run Length and Expected Median Run Length , 2017, Qual. Reliab. Eng. Int..

[26]  Hsiuying Wang,et al.  Comparison of p control charts for low defective rate , 2009, Comput. Stat. Data Anal..

[27]  K. Georgakakos,et al.  Are the El Niño and La Niña predictors of the Iowa River seasonal flow , 1996 .

[28]  Pierre Petitgas,et al.  The CUSUM out-of-control table to monitor changes in fish stock status using many indicators , 2009 .

[29]  Douglas M. Hawkins,et al.  Cusum control for data following the von Mises distribution , 2017 .

[30]  Roberto da Costa Quinino,et al.  Self-oriented control charts for efficient monitoring of mean vectors , 2014, Comput. Ind. Eng..

[31]  Muhammad Riaz,et al.  A sensitive non-parametric EWMA control chart , 2015 .

[32]  Guilherme Pumi,et al.  Kumaraswamy autoregressive moving average models for double bounded environmental data , 2017, 1710.05069.

[33]  Amitava Mukherjee,et al.  A Distribution‐free Control Chart for the Joint Monitoring of Location and Scale , 2012, Qual. Reliab. Eng. Int..

[34]  Sotiris Bersimis,et al.  A compound control chart for monitoring and controlling high quality processes , 2014, Eur. J. Oper. Res..

[35]  Gemai Chen,et al.  AN IMPROVED P CHART THROUGH SIMPLE ADJUSTMENTS , 1998 .

[36]  Bing Xing Wang,et al.  Inference on the Kumaraswamy distribution , 2017 .

[37]  Douglas M. Hawkins,et al.  Sequential rank CUSUM charts for angular data , 2017, Comput. Stat. Data Anal..

[38]  Silvia Joekes,et al.  An improved attribute control chart for monitoring non-conforming proportion in high quality processes , 2013 .

[39]  Kevin E. Trenberth,et al.  The Definition of El Niño. , 1997 .

[40]  M. C. Jones Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages , 2009 .

[41]  M. H. Lim,et al.  Attribute Charts for Zero-Inflated Processes , 2008, Commun. Stat. Simul. Comput..

[42]  Eleni M Smeti,et al.  Control charts for the toxicity of finished water--modeling the structure of toxicity. , 2007, Water research.

[43]  P. Kumaraswamy A generalized probability density function for double-bounded random processes , 1980 .

[44]  K. Wyrtki Sea Level During the 1972 El Niño , 1977 .

[45]  F. Lombard,et al.  A cusum procedure to detect deviations from uniformity in angular data , 2012 .

[46]  Saralees Nadarajah,et al.  On the distribution of Kumaraswamy , 2008 .