The Permutation Groups and the Equivalence of Cyclic and Quasi-Cyclic Codes

We give the class of finite groups which arise as the permutation groups of cyclic codes over finite fields. Furthermore, we extend the results of Brand and Huffman et al. and we find the properties of the set of permutations by which two cyclic codes of length p^r can be equivalent. We also find the set of permutations by which two quasi-cyclic codes can be equivalent.

[1]  W. Burnside,et al.  On some Properties of Groups of Odd Order , 1900 .

[2]  Ayoub Otmani,et al.  Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes , 2008, Math. Comput. Sci..

[3]  G. M.,et al.  Theory of Groups of Finite Order , 1911, Nature.

[4]  Thierry P. Berger A direct proof for the automorphism group of Reed-Solomon codes , 1990, EUROCODE.

[5]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[6]  Thierry P. Berger,et al.  On the Automorphism Groups of Affine-Invariant Codes. , 1994, Des. Codes Cryptogr..

[7]  Thierry P. Berger,et al.  The permutation group of affine-invariant extended cyclic codes , 1996, IEEE Trans. Inf. Theory.

[8]  Ron M. Roth,et al.  On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.

[9]  Christophe Chabot Reconnaissance de codes, structure des codes quasi-cycliques , 2009 .

[10]  M. Hall The Theory Of Groups , 1959 .

[11]  Edward Dobson,et al.  On groups of odd prime-power degree that contain a full cycle , 2005, Discret. Math..

[12]  Peter Sin,et al.  The Permutation Modules for GL(n+1, Fq) Acting on Pn(Fq) and Fqn+1 , 2000 .

[13]  N. J. A. Sloane,et al.  A [45, 13] code with minimal distance 16 , 1990, Discret. Math..

[14]  W. Cary Huffman,et al.  Multipliers and Generalized Multipliers of Cyclic Objects and Cyclic Codes , 1993, J. Comb. Theory, Ser. A.

[15]  Rita Procesi,et al.  Codes and groups , 2006 .

[16]  Brian Alspach,et al.  Isomorphism of circulant graphs and digraphs , 1979, Discret. Math..

[17]  Brain Mortimer,et al.  The Modular Permutation Representations of the Known Doubly Transitive Groups , 1980 .

[18]  D. Robinson A Course in the Theory of Groups , 1982 .

[19]  T. Berger Groupes de permutations des codes mds affine-invariants , 1993 .

[20]  Kenza Guenda Sur l'équivalence des codes , 2010 .

[21]  Péter P. Pálfy,et al.  Isomorphism Problem for Relational Structures with a Cyclic Automorphism , 1987, Eur. J. Comb..

[22]  Neal Brand Polynomial isomorphisms of combinatorial objects , 1991, Graphs Comb..

[23]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[24]  J. Dixon,et al.  Permutation Groups , 1996 .

[25]  Vera Pless,et al.  Duadic Codes , 1984, IEEE Trans. Inf. Theory.

[26]  Peter Sin,et al.  THE PERMUTATION MODULES FOR GL( n +1, [ ] q ) ACTING ON ℙ n ([ ] q ) AND [ ] n +1 q , 2000 .

[27]  A. Williamson,et al.  On primitive permutation groups containing a cycle , 1973 .