Spectral analysis and unsupervised SVM classification for skin hyper-pigmentation classification

Data reduction procedures and classification via support vector machines (SVMs) are often associated with multi or hy-perspectral image analysis. In this paper, we propose an automatic method with these two schemes in order to perform a classification of skin hyper-pigmentation on multi-spectral images. We propose a spectral analysis method to partition the spectrum as a tool for data reduction, implemented by projection pursuit. Once the data is reduced, an SVM is used to differentiate the pathological from the healthy areas. As SVM is a supervised classification method, we propose a spatial criterion for spectral analysis in order to perform automatic learning.