Characterizing the Uncertainty of the Fundamental Matrix

This paper deals with the analysis of the uncertainty of the fundamental matrix. The basic idea is to compute the fundamental matrix and its uncertainty at the same time. We give two different methods. The first one is a statistical approach. As in all statistical methods the precision of the results depends on the number of analyzed samples. This means that we can always improve our results if we increase the number of samples but this process is very time consuming. Alternatively, we propose a much simpler method which gives analytical results which are close to the results of the statistical method. Experiments with synthetic and real data have been conducted to validate the proposed methods. At the end of the paper, we provide three applications of the estimated uncertainty of the fundamental matrix: definition of the epipolar band for stereo matching, projective reconstruction, and self-calibration.

[1]  Richard I. Hartley,et al.  Projective Reconstruction and Invariants from Multiple Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  O. Faugeras,et al.  3-D Reconstruction of Urban Scenes from Sequences of Images , 1995 .

[3]  Søren I. Olsen,et al.  Epipolar Line Estimation , 1992, ECCV.

[4]  Roger Mohr,et al.  Accurate Projective Reconstruction , 1993, Applications of Invariance in Computer Vision.

[5]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[6]  O. D. Faugeras,et al.  Camera Self-Calibration: Theory and Experiments , 1992, ECCV.

[7]  Gabriela Csurka,et al.  Modelisation projective des objets tridimensionnels en vision par ordinateur , 1996 .

[8]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Olivier D. Faugeras,et al.  A Comparison of Projective Reconstruction Methods for Pairs of Views , 1997, Comput. Vis. Image Underst..

[10]  Olivier D. Faugeras,et al.  A Stability Analysis of the Fundamental Matrix , 1994, ECCV.

[11]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[12]  Andrew Zisserman,et al.  Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.

[13]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[14]  Olivier Faugeras,et al.  3D Dynamic Scene Analysis: A Stereo Based Approach , 1992 .

[15]  Paul A. Beardsley,et al.  Camera Calibration Using Multiple Images , 1992, ECCV.

[16]  Olivier D. Faugeras,et al.  Computing three dimensional project invariants from a pair of images using the Grassmann-Cayley algebra , 1998, Image Vis. Comput..

[17]  Olivier D. Faugeras,et al.  A comparison of projective reconstruction methods for pairs of views , 1995, Proceedings of IEEE International Conference on Computer Vision.

[18]  Roger Mohr,et al.  Epipole and fundamental matrix estimation using virtual parallax , 1995, Proceedings of IEEE International Conference on Computer Vision.

[19]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1995, Int. J. Robotics Res..

[20]  Rajiv Gupta,et al.  Computing matched-epipolar projections , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[22]  Olivier Faugeras,et al.  Applications of non-metric vision to some visual guided tasks , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[23]  Rachid Deriche,et al.  Calibrating a Binocular Stereo through Projective Reconstruc- Tion Using Both a Calibration Ob- Ject and the Environment , 1995 .

[24]  R. Hartley Invariants of Lines in Space , 1993 .

[25]  Olivier Faugeras,et al.  Motion of an uncalibrated stereo rig: self-calibration and metric reconstruction , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[26]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[27]  Quang-Tuan Luong Matrice Fondamentale et Calibration Visuelle sur l''''Environnement - Vers une plus grande autonomie , 1992 .

[28]  Olivier Faugeras,et al.  Projective, affine, and metric measurements from video sequences , 1995, Optics & Photonics.

[29]  Philip H. S. Torr,et al.  Stochastic Motion Clustering , 1994, ECCV.

[30]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[31]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[32]  Rajiv Gupta,et al.  Stereo from uncalibrated cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[34]  Olivier D. Faugeras,et al.  Camera Calibration, Scene Motion and Structure recovery from point correspondences and fundamental m , 1997 .

[35]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .