Profiling the human intestinal environment under physiological conditions

[1]  D. Shalon,et al.  Human metabolome variation along the upper intestinal tract , 2023, Nature Metabolism.

[2]  S. Withers,et al.  Carbohydrate-active enzymes (CAZymes) in the gut microbiome , 2022, Nature Reviews Microbiology.

[3]  S. Quake The Tabula Sapiens: a multiple organ single cell transcriptomic atlas of humans , 2021, bioRxiv.

[4]  D. Relman,et al.  Optimization of the 16S rRNA sequencing analysis pipeline for studying in vitro communities of gut commensals , 2022, iScience.

[5]  Taylor H. Nguyen,et al.  Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. , 2022, Cell host & microbe.

[6]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[7]  R. Kerby,et al.  Dominant Bacterial Phyla from the Human Gut Show Widespread Ability To Transform and Conjugate Bile Acids , 2021, mSystems.

[8]  Emily C. Gentry,et al.  A Synthesis-Based Reverse Metabolomics Approach for the Discovery of Chemical Structures from Humans and Animals. , 2021 .

[9]  Philipp E. Geyer,et al.  A New Parallel High-Pressure Packing System Enables Rapid Multiplexed Production of Capillary Columns , 2021, bioRxiv.

[10]  R. Lanfear,et al.  sangeranalyseR: Simple and Interactive Processing of Sanger Sequencing Data in R , 2021, Genome biology and evolution.

[11]  Tom O. Delmont,et al.  VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses , 2021, Microbiome.

[12]  Karthik Anantharaman,et al.  Deciphering Active Prophages from Metagenomes , 2021, bioRxiv.

[13]  A. Deutschbauer,et al.  Rapid ordering of barcoded transposon insertion libraries of anaerobic bacteria , 2019, Nature Protocols.

[14]  N. Kyrpides,et al.  CheckV assesses the quality and completeness of metagenome-assembled viral genomes , 2020, Nature Biotechnology.

[15]  C. Putonti,et al.  Mimicking prophage induction in the body: induction in the lab with pH gradients , 2020, PeerJ.

[16]  Bangmao Wang,et al.  Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices , 2020, Frontiers in Cellular and Infection Microbiology.

[17]  S. Lo,et al.  Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study , 2020, Digestive Diseases and Sciences.

[18]  Karthik Anantharaman,et al.  VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences , 2020, Microbiome.

[19]  Julie C. Lumeng,et al.  Global chemical effects of the microbiome include new bile-acid conjugations , 2020, Nature.

[20]  Michael J MacCoss,et al.  Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. , 2020, Journal of proteome research.

[21]  Chao Deng,et al.  Identifying viruses from metagenomic data using deep learning , 2020, Quantitative Biology.

[22]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[23]  Geoffrey L. Winsor,et al.  CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database , 2019, Nucleic Acids Res..

[24]  M. Clatworthy,et al.  Distinct microbial and immune niches of the human colon , 2019, bioRxiv.

[25]  J. Bielawski,et al.  The relationship between fecal bile acids and microbiome community structure in pediatric Crohn’s disease , 2019, The ISME Journal.

[26]  Aydin Sadeqi,et al.  Ingestible Osmotic Pill for In Vivo Sampling of Gut Microbiomes , 2019, Adv. Intell. Syst..

[27]  L. Albenberg,et al.  The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions , 2019, Cellular and molecular gastroenterology and hepatology.

[28]  B. Liu,et al.  Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing , 2019, bioRxiv.

[29]  L. Engstrand,et al.  Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals , 2019, United European gastroenterology journal.

[30]  Kyle A. Martin,et al.  Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation , 2019, bioRxiv.

[31]  A. Flenniken,et al.  A Comprehensive Plasma Metabolomics Dataset for a Cohort of Mouse Knockouts within the International Mouse Phenotyping Consortium , 2019, bioRxiv.

[32]  P. Dawson,et al.  Animal models to study bile acid metabolism. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[33]  Xu Zhang,et al.  Perspective and Guidelines for Metaproteomics in Microbiome Studies. , 2019, Journal of proteome research.

[34]  Hiroshi Mashimo,et al.  Advances in the physiology of gastric emptying , 2019, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[35]  Feng Li,et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies , 2019, PeerJ.

[36]  Xingzhen Lao,et al.  Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome , 2019, Microbiome.

[37]  Itai Sharon,et al.  Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features , 2018, Cell.

[38]  Zhenglu Yang,et al.  dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation , 2017, Nucleic Acids Res..

[39]  Kris Sankaran,et al.  Latent variable modeling for the microbiome. , 2017, Biostatistics.

[40]  C. Nakatsu,et al.  Microbial Ecology along the Gastrointestinal Tract , 2017, Microbes and environments.

[41]  Stefan Tenzer,et al.  Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. , 2017, Journal of proteome research.

[42]  J. Banfield,et al.  dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.

[43]  S. Lynch,et al.  The Human Intestinal Microbiome in Health and Disease. , 2016, The New England journal of medicine.

[44]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[45]  Matthias Mann,et al.  Plasma Proteome Profiling to Assess Human Health and Disease. , 2016, Cell systems.

[46]  L. Steinman,et al.  Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis , 2016, Proceedings of the National Academy of Sciences.

[47]  Joshua E. Elias,et al.  The effect of microbial colonization on the host proteome varies by gastrointestinal location , 2015, The ISME Journal.

[48]  Justin L Sonnenburg,et al.  Quantitative Imaging of Gut Microbiota Spatial Organization. , 2015, Cell host & microbe.

[49]  J. Garssen,et al.  The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5 , 2015, Microorganisms.

[50]  H. Frijlink,et al.  Gastrointestinal pH and Transit Time Profiling in Healthy Volunteers Using the IntelliCap System Confirms Ileo-Colonic Release of ColoPulse Tablets , 2015, PloS one.

[51]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[52]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[53]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[54]  P. Hylemon,et al.  Bile acids are nutrient signaling hormones , 2014, Steroids.

[55]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[56]  Shuifang Zhu,et al.  Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads , 2014, BMC Bioinformatics.

[57]  Joshua E. Elias,et al.  Host-centric Proteomics of Stool: A Novel Strategy Focused on intestinal Responses to the Gut Microbiota* , 2013, Molecular & Cellular Proteomics.

[58]  J. Chiang Bile acid metabolism and signaling. , 2013, Comprehensive Physiology.

[59]  S. Sarker Faculty Opinions recommendation of Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. , 2013 .

[60]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[61]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[62]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[63]  Larry Gold,et al.  Advances in human proteomics at high scale with the SOMAscan proteomics platform. , 2012, New biotechnology.

[64]  Matthias Mann,et al.  SprayQc: a real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components. , 2012, Journal of proteome research.

[65]  Yunwei Wang,et al.  Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice , 2012, Nature.

[66]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[67]  Guido Costamagna,et al.  Second-generation colon capsule endoscopy compared with colonoscopy. , 2011, Gastrointestinal endoscopy.

[68]  Kurt Hornik,et al.  topicmodels : An R Package for Fitting Topic Models , 2016 .

[69]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[70]  Michiel Kleerebezem,et al.  High temporal and inter-individual variation detected in the human ileal microbiota. , 2010, Environmental microbiology.

[71]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[72]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[73]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[74]  A. Shevchenko,et al.  Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. , 2008, Journal of lipid research.

[75]  Dae-Joong Kang,et al.  Bile salt biotransformations by human intestinal bacteria Published, JLR Papers in Press, November 18, 2005. , 2006, Journal of Lipid Research.

[76]  T. Kararli Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals , 1995, Biopharmaceutics & drug disposition.

[77]  E. Baron,et al.  Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. , 1989, Journal of general microbiology.

[78]  I. Carrió,et al.  Gender-related differences in gastric emptying. , 1988, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.