On Delay Constrained Multicast Capacity of Large-Scale Mobile Ad-Hoc Networks

This paper studies the delay constrained multicast capacity of large-scale mobile ad hoc networks (MANETs). We consider a MANET that consists of $n_{s}$ multicast sessions. Each multicast session has one source and $p$ destinations. Each source sends identical information to the $p$ destinations in its multicast session, and the information is required to be delivered to all the $p$ destinations within $D$ time-slots. Assuming the wireless mobiles move according to a 2-D independently and identically distributed mobility model, we first prove that the capacity per multicast session is $O(\min \{1, (\log p)(\log (n_{s}p)) ({{D}/{n_{s}}})^{1/2}\})$ . 1 We then propose a joint coding/scheduling algorithm achieving a throughput of $\Theta (\min \{1,{({D}/{n_{s}})}^{1/2}\})$ . Our simulation results suggest that the same scaling law also holds under random walk and random waypoint models. 1 Given non-negative functions $f(n)$ and $g(n)$ : $f(n)=O(g(n))$ means there exist positive constants $c$ and $m$ such that $f(n) \leq cg(n)$ for all $ n\geq m;~f(n)=\Omega (g(n))$ means there exist positive constants $c$ and $m$ such that $f(n)\geq cg(n)$ for all $n\geq m;~f(n)=\Theta (g(n))$ means that both $f(n)=\Omega (g(n))$ and $f(n)=O(g(n))$ hold; $f(n)=o(g(n))$ means that $\lim _{n\rightarrow \infty } f(n)/g(n)=0$ ; and $f(n)=\omega (g(n))$ means that $\lim _{n\rightarrow \infty } g(n)/f(n)=0$ .

[1]  Eytan Modiano,et al.  Capacity and delay tradeoffs for ad hoc mobile networks , 2004, IEEE Transactions on Information Theory.

[2]  Andrea J. Goldsmith,et al.  Large wireless networks under fading, mobility, and delay constraints , 2004, IEEE INFOCOM 2004.

[3]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[4]  Suhas Diggavi,et al.  Even one-dimensional mobility increases ad hoc wireless capacity , 2002, Proceedings IEEE International Symposium on Information Theory,.

[5]  Ness B. Shroff,et al.  Delay and Capacity Trade-Offs in Mobile Ad Hoc Networks: A Global Perspective , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[6]  Zhen Liu,et al.  Capacity, delay and mobility in wireless ad-hoc networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[7]  Devavrat Shah,et al.  Throughput and Delay in Random Wireless Networks With Restricted Mobility , 2007, IEEE Transactions on Information Theory.

[8]  Ильина Кристина Александровна ФОНЕТИЧЕСКАЯ ИНТЕРФЕРЕНЦИЯ В НОВОСТНЫХ ПРОГРАММАХ ВСЕМИРНОЙ СЛУЖБЫ BBC , 2017 .

[9]  R. Srikant,et al.  Coding Achieves the Optimal Delay-Throughput Trade-offs in Mobile Ad-Hoc Networks: A Hybrid Random Walk Model with Fast Mobiles , 2007 .

[10]  R. Srikant,et al.  The Multicast Capacity of Large Multihop Wireless Networks , 2007, IEEE/ACM Transactions on Networking.

[11]  David Tse,et al.  Mobility increases the capacity of ad hoc wireless networks , 2002, TNET.

[12]  Devavrat Shah,et al.  Throughput-delay trade-off in wireless networks , 2004, IEEE INFOCOM 2004.

[13]  Kang-Won Lee,et al.  RelayCast: Scalable multicast routing in Delay Tolerant Networks , 2008, 2008 IEEE International Conference on Network Protocols.

[14]  Ness B. Shroff,et al.  Degenerate delay-capacity tradeoffs in ad-hoc networks with Brownian mobility , 2006, IEEE Transactions on Information Theory.

[15]  Ashish Agarwal,et al.  Improved capacity bounds for wireless networks , 2004, Wirel. Commun. Mob. Comput..

[16]  Devavrat Shah,et al.  Optimal Throughput–Delay Scaling in Wireless Networks—Part II: Constant-Size Packets , 2006, IEEE Transactions on Information Theory.

[17]  Devavrat Shah,et al.  Optimal throughput-delay scaling in wireless networks - part I: the fluid model , 2006, IEEE Transactions on Information Theory.

[18]  Ravi Mazumdar,et al.  Scaling laws for capacity and delay in wireless ad hoc networks with random mobility , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[19]  Paolo Giaccone,et al.  Capacity Scaling of Sparse Mobile Ad Hoc Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[20]  R. Srikant,et al.  Coding Achieves the Optimal Delay-Throughput Trade-off in Mobile Ad-Hoc Networks: Two-Dimensional I.I.D. Mobility Model with Fast Mobiles , 2007, 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops.

[21]  Margaret Martonosi,et al.  Hardware design experiences in ZebraNet , 2004, SenSys '04.

[22]  Ness B. Shroff,et al.  Delay and Capacity Trade-Offs in Mobile Ad Hoc Networks: A Global Perspective , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[23]  Shaojie Tang,et al.  Multicast capacity for large scale wireless ad hoc networks , 2007, MobiCom '07.

[24]  Ness B. Shroff,et al.  Towards achieving the maximum capacity in large mobile wireless networks under delay constraints , 2004, Journal of Communications and Networks.

[25]  Xinbing Wang,et al.  MotionCast: on the capacity and delay tradeoffs , 2009, MobiHoc '09.

[26]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[27]  Devavrat Shah,et al.  Oblivious Routing with Mobile Fusion Centers over a Sensor Network , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[28]  Paolo Giaccone,et al.  Capacity scaling in delay tolerant networks with heterogeneous mobile nodes , 2007, MobiHoc '07.

[29]  Mario Gerla,et al.  Understanding the Capacity and Delay Scaling Laws of Delay Tolerant Networks : A Unified Approach , 2007 .

[30]  R. Srikant,et al.  Optimal Delay–Throughput Tradeoffs in Mobile Ad Hoc Networks , 2008, IEEE Transactions on Information Theory.

[31]  PrabhakarBalaji,et al.  Optimal throughput-delay scaling in wireless networks , 2006 .

[32]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .