Sensitivity analysis of reliability functions of the exponential power series lifetime distribution

ABSTRACT Hazard rate functions are often used in modeling of lifetime data. The Exponential Power Series (EPS) family has a monotone hazard rate function. In this article, the influence of input factors such as time and parameters on the variability of hazard rate function is assessed by local and global sensitivity analysis. Two different indices based on local and global sensitivity indices are presented. The simulation results for two datasets show that the hazard rate functions of the EPS family are sensitive to input parameters. The results also show that the hazard rate function of the EPS family is more sensitive to the exponential distribution than power series distributions.

[1]  Way Kuo,et al.  Importance Measures in Reliability, Risk, and Optimization: Principles and Applications , 2012 .

[2]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[3]  Thor Erik Nøkland and Terje Aven On Selection of Importance Measures in Risk and Reliability Analysis , 2013 .

[4]  Souvik Chakraborty,et al.  A hybrid approach for global sensitivity analysis , 2017, Reliab. Eng. Syst. Saf..

[5]  ScienceDirect Reliability engineering & system safety , 1988 .

[6]  Mario Paruggia,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2006 .

[7]  Sadegh Rezaei,et al.  A two-parameter lifetime distribution with decreasing failure rate , 2008, Comput. Stat. Data Anal..

[8]  J. Davis Univariate Discrete Distributions , 2006 .

[9]  M. Cheok,et al.  Use of importance measures in risk-informed regulatory applications , 1998 .

[10]  Emanuele Borgonovo,et al.  A new importance measure for risk-informed decision making , 2001, Reliab. Eng. Syst. Saf..

[11]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[12]  Saralees Nadarajah,et al.  A new lifetime distribution , 2014 .

[13]  A. Hadi,et al.  Some New Methods for Local Sensitivity Analysis in Statistics , 2006 .

[14]  Mojtaba Ganjali,et al.  On some lifetime distributions with decreasing failure rate , 2009, Comput. Stat. Data Anal..

[15]  Gordon E. Willmot,et al.  Lundberg approximations for compound distributions with insurance applications , 2001 .

[16]  A. W. Marshall,et al.  Properties of Probability Distributions with Monotone Hazard Rate , 1963 .

[17]  Arghavan Louhghalam,et al.  Variance decomposition and global sensitivity for structural systems , 2010 .

[18]  Zhenzhou Lu,et al.  A new variance-based global sensitivity analysis technique , 2013, Comput. Phys. Commun..

[19]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[20]  Emanuele Borgonovo,et al.  Sensitivity analysis: A review of recent advances , 2016, Eur. J. Oper. Res..

[21]  I. Sobol Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .

[22]  N. A. S. Hamm,et al.  Variance-based sensitivity analysis of the probability of hydrologically induced slope instability , 2006, Comput. Geosci..

[23]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[24]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[25]  S. Loukas,et al.  A lifetime distribution with decreasing failure rate , 1998 .

[26]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[27]  Emanuele Borgonovo,et al.  Sensitivity analysis in investment project evaluation , 2004 .

[28]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[29]  Reuven Y. Rubinstein,et al.  Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models , 1989, Oper. Res..

[30]  J. Kleijnen,et al.  Sensitivity Analysis of Simulation Models , 2009 .

[31]  K. S. Canady,et al.  Probabilistic safety assessment support for the maintenance rule at Duke Power Company , 1999 .

[32]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .