HICOSMO – cosmology with a complete sample of galaxy clusters – I. Data analysis, sample selection and luminosity–mass scaling relation

The X-ray regime, where the most massive visible component of galaxy clusters, the intra cluster medium (ICM), is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyze a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, OmegaM, or the amplitude of initial density fluctuations, sigma8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analyzed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) which gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the 0.1-2.4-keV-luminosity vs. mass scaling-relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).

[1]  M. Bersanelli,et al.  Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak – BCG offset , 2015, 1512.00410.

[2]  A. Finoguenov,et al.  LoCuSS: Testing hydrostatic equilibrium in galaxy clusters , 2015, 1511.01919.

[3]  S. Hilbert,et al.  Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing , 2015, 1509.02162.

[4]  H. Hoekstra,et al.  Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters , 2015, 1508.05308.

[5]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[6]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[7]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[8]  V. Bharadwaj,et al.  Extending the LX – T relation from clusters to groups - Impact of cool core nature, AGN feedback, and selection effects , 2014, 1410.5428.

[9]  T. Reiprich,et al.  Scaling Properties of a Complete X-ray Selected Galaxy Group Sample , 2014, 1409.3845.

[10]  M. Sereno,et al.  Comparing masses in literature (CoMaLit) – I. Bias and scatter in weak lensing and X-ray mass estimates of clusters , 2014, 1407.7868.

[11]  L. Moscardini,et al.  CoMaLit – II. The scaling relation between mass and Sunyaev–Zel'dovich signal for Planck selected galaxy clusters , 2014, 1407.7869.

[12]  Heidelberg,et al.  Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints , 2014, 1402.6212.

[13]  R. Massey,et al.  The 400d Galaxy Cluster Survey weak lensing programme - III. Evidence for consistent WL and X-ray masses at z ≈ 0.5 , 2014, 1402.3267.

[14]  S. White,et al.  The mass–concentration–redshift relation of cold dark matter haloes , 2013, 1312.0945.

[15]  R. Starling,et al.  Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.

[16]  S. White,et al.  The mass profile and accretion history of cold dark matter haloes , 2013, 1302.0288.

[17]  Roberto Scaramella,et al.  Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) , 2012, 1210.7690.

[18]  J. Mohr,et al.  TOWARD UNBIASED GALAXY CLUSTER MASSES FROM LINE-OF-SIGHT VELOCITY DISPERSIONS , 2012, 1203.5708.

[19]  S. Habib,et al.  DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS , 2011, 1112.5479.

[20]  M. Mühlegger,et al.  Observational constraints on the redshift evolution of X-ray scaling relations of galaxy clusters out to z ~ 1.5 , 2011, 1109.3708.

[21]  P. Schneider,et al.  Star-formation efficiency and metal enrichment of the intracluster medium in local massive clusters of galaxies , 2011, 1109.0390.

[22]  T. Reiprich,et al.  The LX – Tvir relation in galaxy clusters: effects of radiative cooling and AGN heating , 2011, 1106.5185.

[23]  S. Paltani,et al.  The cool-core bias in X-ray galaxy cluster samples - I. Method and application to HIFLUGCS , 2010, 1011.3302.

[24]  D. Sijacki,et al.  HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion , 2010, 1011.3018.

[25]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[26]  T. Reiprich,et al.  Testing the low-mass end of X-ray scaling relations with a sample of Chandra galaxy groups , 2010, 1109.6498.

[27]  Heinz Andernach,et al.  What is a cool-core cluster? a detailed analysis of the cores of the X-ray flux-limited HIFLUGCS cluster sample , 2009, 0911.0409.

[28]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[29]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations , 2009, 0909.3099.

[30]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[31]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[32]  Y. Jing,et al.  ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS , 2008, 0811.0828.

[33]  T. Reiprich,et al.  AGN heating and ICM cooling in the HIFLUGCS sample of galaxy clusters , 2008, 0810.0797.

[34]  G. W. Pratt,et al.  Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS) , 2008, 0809.3784.

[35]  A. Fabian,et al.  Direct X‐ray spectral deprojection of galaxy clusters , 2008, 0808.2371.

[36]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[37]  M. Donahue,et al.  CHANDRA STUDIES OF THE X-RAY GAS PROPERTIES OF GALAXY GROUPS , 2008, 0805.2320.

[38]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[39]  J. Kneib,et al.  LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations , 2008, 0802.0770.

[40]  A. Tiengo,et al.  Dust-scattered X-ray halos around two Swift gamma-ray bursts: GRB 061019 and GRB 070129 , 2007, 0707.2343.

[41]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[42]  J. Bullock,et al.  Probing the Dark Matter and Gas Fraction in Relaxed Galaxy Groups with X-Ray Observations from Chandra and XMM-Newton , 2006, astro-ph/0610134.

[43]  S. Borgani,et al.  On the efficiency and reliability of cluster mass estimates based on member galaxies , 2006, astro-ph/0605151.

[44]  A. Vikhlinin Predicting a Single-Temperature Fit to Multicomponent Thermal Plasma Spectra , 2005, astro-ph/0504098.

[45]  M. Lombardi,et al.  Mass-sheet degeneracy: Fundamental limit on the cluster mass reconstruction from statistical (weak) lensing , 2004, astro-ph/0405357.

[46]  M. Markevitch,et al.  Chandra Observations of the “Dark” Moon and Geocoronal Solar Wind Charge Transfer , 2004, astro-ph/0402247.

[47]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[48]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[49]  S. Virani,et al.  Chandra Spectra of the Soft X-Ray Diffuse Background , 2002, astro-ph/0209441.

[50]  S. Allen,et al.  The X‐ray virial relations for relaxed lensing clusters observed with Chandra , 2001, astro-ph/0110610.

[51]  L. Guzzo,et al.  The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample ? , 2000, astro-ph/0012266.

[52]  D. Buote Oxygen Absorption in Cooling Flows , 2000, The Astrophysical journal.

[53]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[54]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample — I. The compilation of the sample and the cluster log N—log S distribution , 1998, astro-ph/9812394.

[55]  A. Evrard,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1998, astro-ph/9806353.

[56]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[57]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[58]  M. Malkan,et al.  The WARPS Survey. II. The log N-log S Relation and the X-Ray Evolution of Low-Luminosity Clusters of Galaxies , 1997, astro-ph/9709189.

[59]  Dan McCammon,et al.  ROSAT Survey Diffuse X-Ray Background Maps. II. , 1997 .

[60]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[61]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[62]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[63]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[64]  J. Trümper ROSAT--A New Look at the X-ray Sky. , 1993, Science.

[65]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[66]  A. Fabian,et al.  The distribution and morphology of X-ray emitting gas in the core of the Perseus cluster. , 1981 .

[67]  J. Culhane,et al.  The X-ray temperatures of eight clusters of galaxies and their relationship to other cluster properties , 1977 .

[68]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources Planck Collaboration : , 2016 .

[69]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XI . Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations , 2011 .