An Adaptive Bi-Level Gradient Procedure for the Estimation of Dynamic Traffic Demand

This paper presents an in-depth analysis of the bi-level gradient approximation approach for dynamic traffic demand adjustment and the development of new adaptive approaches. Initially, a comparison between the simultaneous perturbation stochastic approximation (SPSA), asymmetric design (AD), polynomial interpolation (PI) method, which was first proposed by authors in 2010-2011, and its second-order development is presented; then, a sensitivity analysis of the parameters of the SPSA AD-PI is reported; finally, some new advances of the estimation method based on an adaptive approach are proposed and evaluated on a real test network.

[1]  M Di Gangi,et al.  Combining simulative and statistical approach for short time flow forecasting , 2005 .

[2]  S. Eisenman,et al.  Using probe data to estimate OD matrices , 2004, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749).

[3]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[4]  Laurence R. Rilett,et al.  Real‐Time OD Estimation Using Automatic Vehicle Identification and Traffic Count Data , 2002 .

[5]  Oriol Serch,et al.  Dynamic OD matrix estimation exploiting bluetooth data in Urban networks , 2012 .

[6]  M N Postorino,et al.  A GENERATION CONSTRAINED APPROACH FOR THE ESTIMATION OF O/D TRIP MATRICES FROM TRAFFIC COUNTS , 2002 .

[7]  Ernesto Cipriani,et al.  A bi-level gradient approximation method for dynamic traffic demand estimation: Sensitivity analysis and adaptive approach , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[8]  Fulvio Simonelli,et al.  Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data , 2013 .

[9]  Johan Wideberg,et al.  Deriving origin destination data from a mobile phone network , 2007 .

[10]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[11]  James C. Spall,et al.  AN OVERVIEW OF THE SIMULTANEOUS PERTURBATION METHOD FOR EFFICIENT OPTIMIZATION , 1998 .

[12]  Mariano Gallo,et al.  An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem , 2012, Eur. J. Oper. Res..

[13]  Ramachandran Balakrishna,et al.  Off-line calibration of Dynamic Traffic Assignment models , 2006 .

[14]  Tomer Toledo,et al.  Estimation of Dynamic Origin–Destination Matrices Using Linear Assignment Matrix Approximations , 2013, IEEE Transactions on Intelligent Transportation Systems.

[15]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[16]  Ernesto Cipriani,et al.  Investigating the efficiency of a gradient approximation approach for solution of dynamic demand estimation problem , 2008 .

[17]  Francesco Viti,et al.  New Gradient Approximation Method for Dynamic Origin–Destination Matrix Estimation on Congested Networks , 2011 .

[18]  James C. Spall,et al.  Adaptive stochastic approximation by the simultaneous perturbation method , 2000, IEEE Trans. Autom. Control..

[19]  Ernesto Cipriani,et al.  A Gradient Approximation Approach for Adjusting Temporal Origin–Destination Matrices , 2011 .

[20]  Gunnar Flötteröd,et al.  Efficient real time OD matrix estimation based on Principal Component Analysis , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[21]  Xuesong Zhou,et al.  Dynamic Origin-Destination Demand Flow Estimation Utilizing Heterogeneous data sources under Congested Traffic Conditions , 2011 .

[22]  Hani S. Mahmassani,et al.  Dynamic origin-destination demand estimation using automatic vehicle identification data , 2006, IEEE Transactions on Intelligent Transportation Systems.

[23]  Hani S. Mahmassani,et al.  RECURSIVE APPROACHES FOR ONLINE CONSISTENCY CHECKING AND O-D DEMAND UPDATING FOR REAL- TIME DYNAMIC TRAFFIC ASSIGNMENT OPERATION , 2005 .

[24]  Khaled Abdelghany,et al.  Distributed Approach for Estimation of Dynamic Origin–Destination Demand , 2009 .

[25]  Haris N. Koutsopoulos,et al.  Incorporating Automated Vehicle Identification Data into Origin-Destination Estimation , 2004 .

[26]  Evangelos Mitsakis,et al.  A robust method for real time estimation of travel times for dense urban road networks using point-to-point detectors , 2013 .