Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes

Summary Although solid-state lithium (Li) batteries theoretically have higher energy density and better safety than organic solvent-based Li-ion batteries, they currently suffer from problems such as poor power density and rapid performance degradation, hindering their wide applications. The cause of these problems can be largely related to the electrode material|solid-state electrolyte (SSE) interface, which sets a significant barrier for Li + ions to transport across. As a result, an in-depth fundamental understanding of the reaction and process occurring at the electrode material|SSE interface is of paramount importance to alleviate the interfacial impedance and enhance the performance of solid-state Li batteries. This Perspective focuses on the Li|SSE interface, points out the critical challenges for a reversible, dendrite-free, and high-rate Li electrode, recapitulates potential resolutions for these challenges, and highlights the significance of advanced research techniques having the ability to interrogate the buried Li|SSE interfaces.

[1]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[2]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[3]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[4]  Kyeongjae Cho,et al.  Electrode-Electrolyte Interface for Solid State Li-Ion Batteries: Point Defects and Mechanical Strain , 2014 .

[5]  Junichi Kawamura,et al.  Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition , 2004 .

[6]  Seung‐Hwan Lee,et al.  All-solid-state thin film battery based on well-aligned slanted LiCoO 2 nanowires fabricated by glancing angle deposition , 2017 .

[7]  A. Gross,et al.  Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. , 2014, The Journal of chemical physics.

[8]  Y. Meng,et al.  Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries , 2016 .

[9]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[10]  Yayuan Liu,et al.  Solid-State Lithium-Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. , 2017, Nano letters.

[11]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[12]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[13]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[14]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[15]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[16]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[17]  Kazunori Takada,et al.  Interfacial nanoarchitectonics for solid-state lithium batteries. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[18]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[19]  Arnulf Latz,et al.  Thermodynamically Consistent Model for Space-Charge-Layer Formation in a Solid Electrolyte , 2015 .

[20]  R. Hausbrand,et al.  Reaction and Space Charge Layer Formation at the LiCoO2–LiPON Interface: Insights on Defect Formation and Ion Energy Level Alignment by a Combined Surface Science–Simulation Approach , 2017 .

[21]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[22]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[23]  B. R. Shin,et al.  Comparative Study of TiS2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li3PS4 and Li10GeP2S12 Solid Electrolytes , 2014 .

[24]  N. Dudney,et al.  Interface Limited Lithium Transport in Solid-State Batteries. , 2014, The journal of physical chemistry letters.

[25]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[26]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[27]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[28]  M. Armand,et al.  Building better batteries , 2008, Nature.

[29]  M. Forsyth,et al.  In Situ MRI of Operating Solid-State Lithium Metal Cells Based on Ionic Plastic Crystal Electrolytes , 2016 .

[30]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[31]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[32]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[33]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[34]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[35]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[36]  G. Cui,et al.  Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries , 2013 .

[37]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[38]  Kota Suzuki,et al.  Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes , 2016 .

[39]  R. Hausbrand,et al.  Energy level offsets and space charge layer formation at electrode-electrolyte interfaces: X-ray photoelectron spectroscopy analysis of Li-ion model electrodes , 2017 .

[40]  W. Ostwald Die wissenschaftliche Elektrochemie der Gegenwart und die technische der Zukunft , 1894 .

[41]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[42]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[43]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[44]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[45]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[46]  Z. Wen,et al.  Lithium Ion‐Conducting Glass–Ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with Good Electrical and Electrochemical Properties , 2007 .

[47]  Jian-jun Zhang,et al.  An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes. , 2017, Physical chemistry chemical physics : PCCP.

[48]  M. Haruta,et al.  Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. , 2015, Nano letters.

[49]  Jian-jun Zhang,et al.  High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery , 2017 .

[50]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[51]  Kazuo Yamamoto,et al.  Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. , 2010, Angewandte Chemie.

[52]  Venkat Srinivasan,et al.  Effect of initial state of lithium on the propensity for dendrite formation: A theoretical study , 2017 .

[53]  J. Goodenough,et al.  Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. , 2015, Nano letters.

[54]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[55]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[56]  N. Imanishi,et al.  Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .

[57]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[58]  Kuldeep Mishra,et al.  All-solid-state proton battery using gel polymer electrolyte , 2014 .

[59]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[60]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[61]  X. Lü,et al.  Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. , 2014, Chemical communications.

[62]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[63]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[64]  W. Goddard,et al.  Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface , 2017 .

[65]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[66]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[67]  B. S. Kwak,et al.  Thin-film rechargeable lithium batteries , 1994 .

[68]  Liyuan Han,et al.  Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery , 2014 .

[69]  N. Imanishi,et al.  Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12 , 2015 .

[70]  Asma Sharafi,et al.  Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.

[71]  Karsten Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[72]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[73]  Pallab Barai,et al.  Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. , 2017, Physical chemistry chemical physics : PCCP.

[74]  Yunhui Gong,et al.  In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. , 2017, Journal of the American Chemical Society.

[75]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[76]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[77]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[78]  Tao Zhang,et al.  Stability of Li/Polymer Electrolyte-Ionic Liquid Composite/Lithium Conducting Glass Ceramics in an Aqueous Electrolyte , 2011 .

[79]  N. Imanishi,et al.  Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes , 2016 .

[80]  W. Vielstich Zum Mechanismus der Sauerstoffelektrode in alkalischem Elektrolyten , 1958 .

[81]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[82]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[83]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[84]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[85]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[86]  D. Linden Handbook Of Batteries , 2001 .

[87]  W. Weppner FUNDAMENTAL ASPECTS OF ELECTROCHEMICAL, CHEMICAL AND ELECTROSTATIC POTENTIALS IN LITHIUM BATTERIES , 2000 .

[88]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[89]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[90]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[91]  T. Abe,et al.  Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment , 2005 .

[92]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[93]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[94]  Shaofei Wang,et al.  Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. , 2018, Journal of the American Chemical Society.

[95]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[96]  A. Virkar,et al.  Wetting characteristics of sodium on β″-alumina and on nasicon , 1982 .

[97]  M. Braga,et al.  Novel Li3ClO based glasses with superionic properties for lithium batteries , 2014 .

[98]  K. Kanamura,et al.  Electrochemical properties of thin TiO2 electrode on Li1 + xAlxGe2 − x(PO4)3 solid electrolyte , 2011 .

[99]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[100]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[101]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[102]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[103]  Dingchang Lin,et al.  Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. , 2016, ACS nano.