A Survey of Current Models for Simulating the Contact between Rough Surfaces

Analyzing the contact between rough surfaces plays a key role in studying friction, wear, and lubrication in tribological systems. A proper description of the lubrication state and thermal condition also relies on a thorough understanding of the contact phenomena. The existing models for simulating the contact between rough surfaces are reviewed in this paper in three aspects: descriptions of rough surface profiles, expressions of the relations between the contact pressure and the surface displacement, and techniques used to solve the contact equations for the contact pressure and the surface displacements. Recent advancements in contact-models development are also briefly introduced. Presented at the 53rd Annual Meeting in Detroit, Michigan May 17–21, 1998

[1]  Thomas Farris,et al.  Spectral Analysis of Two-Dimensional Contact Problems , 1996 .

[2]  T. R. Thomas,et al.  Computer simulation of the contact of rough surfaces , 1978 .

[3]  Bharat Bhushan,et al.  Generalized fractal analysis and its applications to engineering surfaces , 1995 .

[4]  R. S. Sayles,et al.  A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces , 1986 .

[5]  A. Klarbring A mathematical programming approach to three-dimensional contact problems with friction , 1986 .

[6]  G. Binnig,et al.  Scanning tunneling microscopy , 1984 .

[7]  R. A. Burton Thermal deformation in frictionally heated contact , 1980 .

[8]  Ning Ren,et al.  Behavior of Elastic-Plastic Rough Surface Contacts as Affected by Surface Topography, Load, and Material Hardness , 1996 .

[9]  Stephen V. Pepper,et al.  Fundamentals of tribology at the atomic level , 1988 .

[10]  Dusan Krajcinovic,et al.  Fractal models of elastic-perfectly plastic contact of rough surfaces based on the Cantor set , 1995 .

[11]  A. Love The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary , 1929 .

[12]  Zheng Linqing,et al.  The Characteristics of Elastically Contacting Ideal Rough Surfaces , 1996 .

[13]  David B. Bogy,et al.  Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results , 1995 .

[14]  L. Johansson,et al.  Derivation and analysis of a generalized standard model for contact, friction and wear , 1996 .

[15]  Samuel H. Cohen,et al.  Atomic force microscopy/scanning tunneling microscopy 2 , 1994 .

[16]  Takahisa Kato,et al.  An FFT-Based Method for Rough Surface Contact , 1997 .

[17]  Meir Shillor,et al.  A dynamic thermoviscoelastic contact problem with friction and wear , 1997 .

[18]  Norimitsu Ozawa,et al.  Practical non-contact surface measuring instrument with one nanometre resolution , 1985 .

[19]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[20]  B. J. Hamrock,et al.  A Numerical Solution for Dry Sliding Line Contact of Multilayered Elastic Bodies , 1993 .

[21]  J. Archard,et al.  The contact of surfaces having a random structure , 1973 .

[22]  Francis E. Kennedy,et al.  Temperature Rise at the Sliding Contact Interface for a Coated Semi-Infinite Body , 1993 .

[23]  Herbert S. Cheng,et al.  Computer Simulation of Elastic Rough Contacts , 1985 .

[24]  J. W. Kannel,et al.  Analyses of the Role of Surface Roughness on Contact Stresses Between Elastic Cylinders With and Without Soft Surface Coating , 1989 .

[25]  B. Bhushan,et al.  Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces , 1990 .

[26]  L. Johansson,et al.  Thermoelastic frictional contact problems: Modelling, finite element approximation and numerical realization , 1993 .

[27]  A. Seireg,et al.  A Mathematical Programming Method for Design of Elastic Bodies in Contact , 1971 .

[28]  Kyriakos Komvopoulos,et al.  A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications , 1994 .

[29]  T. L. Warren,et al.  Random Cantor set models for the elastic-perfectly plastic contact of rough surfaces , 1996 .

[30]  H. A. Francis The accuracy of plane strain models for the elastic contact of three-dimensional rough surfaces , 1983 .

[31]  K. Komvopoulos,et al.  A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis , 1994 .

[32]  Gregory M. Hulbert,et al.  FINITE ELEMENT ANALYSIS OF FRICTIONALLY EXCITED THERMOELASTIC INSTABILITY , 1997 .

[33]  Kyugo Hamai,et al.  A Numerical Analysis for Piston Skirts in Mixed Lubrication—Part I: Basic Modeling , 1992 .

[34]  Kyriakos Komvopoulos,et al.  Elastic Finite Element Analysis of Multi-Asperity Contacts , 1992 .

[35]  J. Kaczmarek,et al.  Finite-elements model for the contact of rough surfaces , 1994 .

[36]  D. Whitehouse,et al.  The properties of random surfaces of significance in their contact , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  R. King,et al.  Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space , 1988 .

[38]  Farshid Sadeghi,et al.  Internal Stresses in Contact of a Rough Body and a Viscoelastic Layered Semi-Infinite Plane , 1996 .

[39]  Leon M Keer,et al.  Contact Stress Analysis of a Layered Transversely Isotropic Half-Space , 1992 .

[40]  Yongqing Ju,et al.  A full numerical solution for the elastic contact of three-dimensional real rough surfaces , 1992 .

[41]  J. J. Kalker,et al.  Variational principles of contact elastostatics , 1977 .

[42]  D. Bogy,et al.  An Elastic-Plastic Model for the Contact of Rough Surfaces , 1987 .

[43]  Ning Ren,et al.  The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies , 1994 .

[44]  James C. Wyant,et al.  A new three-dimensional non-contact digital optical profiler , 1988 .

[45]  Nadir Patir,et al.  A numerical procedure for random generation of rough surfaces , 1978 .

[46]  J. Belak,et al.  Molecular Dynamics Studies of Surface Indentation in Two Dimensions , 1990 .

[47]  A. Ya. Grigoriev,et al.  Quantitative analysis of surface topography using scanning electron microscopy , 1992 .

[48]  Donald W. Brenner,et al.  Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces , 1992 .

[49]  A. W. Bush,et al.  Strongly Anisotropic Rough Surfaces , 1979 .

[50]  J. Greenwood,et al.  The Contact of Two Nominally Flat Rough Surfaces , 1970 .

[51]  James Barber THERMOELASTIC DISTORTION OF THE HALF-SPACE , 1987 .

[52]  Herbert S. Cheng,et al.  On the relation of load to average gap in the contact between surfaces with longitudinal roughness , 1992 .

[53]  John I. McCool,et al.  Comparison of models for the contact of rough surfaces , 1986 .

[54]  D. Guha,et al.  The effect of surface roughness on the temperature at the contact between sliding bodies , 1996 .

[55]  David B. Bogy,et al.  Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere , 1993 .

[56]  Ward O. Winer,et al.  Friction-Induced Thermal Influences in Elastic Contact Between Spherical Asperities , 1989 .

[57]  Ning Ren,et al.  Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method , 1993 .

[58]  D. T. N. Williamson,et al.  The Pattern of Batch Manufacture and Its Influence on Machine Tool Design , 1967 .

[59]  Kyriakos Komvopoulos,et al.  Three-Dimensional Molecular Dynamics Analysis of Atomic-Scale Indentation , 1998 .

[60]  R. S. Sayles,et al.  Paper VIII(i) A 3-dimensional method of studying 3-body contact geometry and stress on real rough surfaces , 1987 .

[61]  J. Barber,et al.  Finite Element Analysis of Thermoelastic Contact Stability , 1994 .

[62]  J. Kalker,et al.  A minimum principle for frictionless elastic contact with application to non-Hertzian half-space contact problems , 1972 .

[63]  A. Klarbring,et al.  A mathematical programming approach to contact problems with friction and varying contact surface , 1988 .

[64]  Károly Váradi,et al.  Evaluation of the real contact areas, pressure distributions and contact temperatures during sliding contact between real metal surfaces , 1996 .

[65]  Kenneth Holmberg,et al.  Coatings tribology: a concept, critical aspects and future directions , 1994 .

[66]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[67]  Bharat Bhushan,et al.  Elastic-plastic contact model for bifractal surfaces , 1992 .

[68]  Bharat Bhushan,et al.  On the Correlation Between Friction-Coefficients and Adhesion Stresses , 1975 .

[69]  R. S. Sayles,et al.  Numerical Contact Model of a Smooth Ball on an Anisotropic Rough Surface , 1994 .

[70]  P. C. Sui,et al.  An efficient computation model for calculating surface contact pressures using measured surface roughness , 1997 .

[71]  Tom Bell,et al.  A Numerical Model for the Dry Sliding Contact of Layered Elastic Bodies with Rough Surfaces , 1996 .

[72]  R. S. Sayles,et al.  A Numerical Model for the Contact of Layered Elastic Bodies With Real Rough Surfaces , 1992 .

[73]  Dong Zhu,et al.  Numerical Analysis for the Elastic Contact of Real Rough Surfaces , 1999 .

[74]  Francis E. Kennedy,et al.  Contact Temperature and Its Effects in an Oscillatory Sliding Contact , 1989 .

[75]  Leon M. Keer,et al.  Scale Effects of Elastic-Plastic Behavior of Microscopic Asperity Contacts , 1995 .

[76]  B. Bhushan,et al.  Fractal Model of Elastic-Plastic Contact Between Rough Surfaces , 1991 .

[77]  Takahisa Kato,et al.  Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model , 1997 .

[78]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[79]  P. Gupta,et al.  Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid , 1974 .

[80]  Bharat Bhushan,et al.  Contact analysis of three-dimensional rough surfaces under frictionless and frictional contact , 1996 .

[81]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[82]  Shunichi Aoyama,et al.  A Finite Element Analysis of Dynamically Loaded Journal Bearings in Mixed Lubrication , 1998 .

[83]  P. Wolfe THE SIMPLEX METHOD FOR QUADRATIC PROGRAMMING , 1959 .

[84]  B. Bhushan,et al.  A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle , 1996 .

[85]  J. Belak,et al.  The indentation and scraping of a metal surface: A molecular dynamics study , 1992 .

[86]  B. Bhushan Contact mechanics of rough surfaces in tribology: multiple asperity contact , 1998 .

[87]  N. K. Myshkin,et al.  Simulation of real contact in tribology , 1998 .

[88]  R. D. Gibson,et al.  The elastic contact of a rough surface , 1975 .

[89]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[90]  B. Bhushan Contact Mechanics of Rough Surfaces in Tribology: Single Asperity Contact , 1996 .

[91]  R. S. Sayles,et al.  Basic principles of rough surface contact analysis using numerical methods , 1996 .

[92]  A. Azarkhin,et al.  Combined Thermal - Mechanical Effects in Frictional Sliding , 1991 .