Robustness and robust stability of the active sliding mode synchronization

Abstract We have developed relations between uncertainties and signals bounds in one side and the control parameters on the other side in the case of the active sliding mode synchronization. Using Lyapunov stability theorem, we have determined uncertainties levels for which synchronization is achieved for a given set of the control parameters. We have run a nonlinear programming algorithm to determine the control parameters for specific range of the uncertainties. Finally, numerical simulations are presented to verify the derived relations.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Mohammad Saleh Tavazoei,et al.  Determination of active sliding mode controller parameters in synchronizing different chaotic systems , 2007 .

[3]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[4]  Parlitz,et al.  Driving and synchronizing by chaotic impulses. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. II. Applications , 2004 .

[6]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[7]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[8]  Zhi Li,et al.  Robust adaptive synchronization of Rossler and Chen chaotic systems via slide technique , 2003 .

[9]  Xikui Ma,et al.  Synchronization of chaotic systems with parametric uncertainty using active sliding mode control , 2004 .

[10]  Mohammad Haeri,et al.  Synchronizing different chaotic systems using active sliding mode control , 2007 .

[11]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[12]  Mohammad Saleh Tavazoei,et al.  Synchronization of uncertain chaotic systems using active sliding mode control , 2007 .

[13]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[14]  T. Liao,et al.  Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity , 2005 .