Impact of observation‐optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model

[1] A skillful decadal prediction that foretells varying regional climate conditions over seasonal-interannual to multidecadal time scales is of societal significance. However, predictions initialized from the climate observing system tend to drift away from observed states towards the imperfect model climate due to model biases arising from imperfect model equations, numeric schemes and physical parameterizations, as well as the errors in the values of model parameters. Here I show how to mitigate the model bias through optimizing model parameters using observations so as to constrain the model drift in climate predictions with a simple decadal prediction model. Results show that the coupled state-parameter optimization with observations greatly enhances the predictability of the coupled model. While valid “atmospheric” forecasts are extended by more than 5 times, the decadal predictability of the “deep ocean” is almost doubled. The coherence of optimized model parameters and states is critical to improve the long time scale predictions.

[1]  A. Rosati,et al.  System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies , 2007 .

[2]  Michael Ghil,et al.  Data Assimilation for a Coupled Ocean–Atmosphere Model. Part II: Parameter Estimation , 2008 .

[3]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[4]  Dick Dee,et al.  Forecast Model Bias Correction in Ocean Data Assimilation , 2005 .

[5]  Bruce D. Cornuelle,et al.  The Forcing of the Pacific Decadal Oscillation , 2005 .

[6]  Jeffrey L. Anderson A Local Least Squares Framework for Ensemble Filtering , 2003 .

[7]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability , 2008 .

[8]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[9]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[10]  A. Hollingsworth,et al.  The Performance of a Medium-Range Forecast Model in Winter–Impact of Physical Parameterizations , 1980 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  A. Gnanadesikan,et al.  A simple predictive model for the structure of the oceanic pycnocline , 1999, Science.

[13]  Stephen Cusack,et al.  Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model , 2007, Science.

[14]  Syukuro Manabe,et al.  Interdecadal Variations of the Thermohaline Circulation in a Coupled Ocean-Atmosphere Model , 1993 .

[15]  G. Meehl,et al.  Decadal prediction: Can it be skillful? , 2009 .

[16]  L. Kornblueh,et al.  Advancing decadal-scale climate prediction in the North Atlantic sector , 2008, Nature.

[17]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[18]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[19]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .