Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments

Microalgae could become an important renewable source for chemicals, food, and energy if process costs can be reduced. In the past 60 years, relevant factors in open outdoor mass cultivation of microalgae were identified and elaborate solutions regarding bioprocesses and bioreactors were developed. An overview of these solutions is presented. Since the cost of most microalgal products from current mass cultivation systems is still prohibitively high, further development is required. The application of complex computational techniques for cost-effective process and reactor development will become more important if experimental validation of simulation results can easily be achieved. Due to difficulties inherent to outdoor experimentation, it can be useful to conduct validation experiments indoors. Considerations and approaches for realistic indoor reproduction of the most important environmental conditions in microalgae cultivation experiments—light, temperature, and substance concentrations, are discussed.

[1]  Yong-Woo Lee,et al.  Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. , 2013, Bioresource technology.

[2]  J. Grobbelaar Mass Production of Microalgae at Optimal Photosynthetic Rates , 2013 .

[3]  Yusuf Chisti,et al.  Raceways-based Production of Algal Crude Oil , 2013 .

[4]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[5]  Thomas Lee Paez,et al.  Introduction to Model Validation , 2009 .

[6]  A. Richmond Handbook of microalgal culture: biotechnology and applied phycology. , 2004 .

[7]  J. C. Goldman,et al.  Outdoor algal mass cultures—II. Photosynthetic yield limitations☆ , 1979 .

[8]  R. Luque Algal biofuels: the eternal promise? , 2010 .

[9]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[10]  Robert Frouin,et al.  Estimating Photosynthetically Active Radiation (PAR) at the earth's surface from satellite observations , 1995 .

[11]  John Philip Cooper,et al.  Photosynthesis and productivity in different environments , 1976 .

[12]  D. Feinberg,et al.  Fuels from microalgae: Technology status, potential, and research requirements , 1986 .

[13]  Jacyra Soares,et al.  Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil , 2011 .

[14]  A. Vonshak Mass Culture of Spirulina Outdoors- The Earthrise Farms Experience , 1997 .

[15]  K. Mccree THE ACTION SPECTRUM, ABSORPTANCE AND QUANTUM YIELD OF PHOTOSYNTHESIS IN CROP PLANTS , 1971 .

[16]  A. Mayer,et al.  Problems of design and ecological considerations in mass culture of algae , 1964 .

[17]  Michael A. Borowitzka,et al.  Culturing microalgae in outdoor ponds , 2005 .

[18]  A. Belay Biology and Industrial Production of Arthrospira (Spirulina) , 2013 .

[19]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[20]  C. Walter,et al.  Microalgal Biotechnology: Potential and Production , 2012 .

[21]  H. Senger,et al.  UV-A/Blue-Light responses in algae , 1994 .

[22]  Yongjun Zhao,et al.  Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. , 2013, Bioresource technology.

[23]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[24]  S. Long,et al.  SI UNITS IN PUBLICATIONS IN PLANT SCIENCE , 1981 .

[25]  A. Richmond,et al.  Microalgal biotechnology at the turn of the millennium: A personal view , 2000, Journal of Applied Phycology.

[26]  M. Huntley,et al.  CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal , 2007 .

[27]  William J. Oswald,et al.  Energy production by microbial photosynthesis , 1977, Nature.

[28]  John S. Burlew,et al.  Algal culture from laboratory to pilot plant. , 1953 .

[29]  J. Kopecký,et al.  Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades , 2011, Journal of Industrial Microbiology & Biotechnology.

[30]  Raymond Wheeler,et al.  Design and fabrication of adjustable red-green-blue LED light arrays for plant research , 2005, BMC Plant Biology.

[31]  T. W. Tibbits International Lighting in Controlled Environments Workshop , 1994 .

[32]  Johan U Grobbelaar,et al.  Factors governing algal growth in photobioreactors: the “open” versus “closed” debate , 2009, Journal of Applied Phycology.

[33]  Nadarajah Narendran,et al.  Impact of dimming white LEDs: chromaticity shifts due to different dimming methods , 2005, SPIE Optics + Photonics.

[34]  Robert Eugene Blankenship,et al.  Expanding the solar spectrum used by photosynthesis. , 2011, Trends in plant science.

[35]  J. Greening,et al.  Radiation Measurement , 1970, Nature.

[36]  Scott C. James,et al.  Modeling Algae Growth in an Open-Channel Raceway , 2008, J. Comput. Biol..

[37]  J. Grobbelaar,et al.  Physiological and technological considerations for optimising mass algal cultures , 2000, Journal of Applied Phycology.

[38]  J. Nielsen,et al.  Bioreaction Engineering Principles , 1994, Springer US.

[39]  J. Grobbelaar From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa , 2009, Journal of Applied Phycology.

[40]  P. Schenk,et al.  Perspectives on metabolic engineering for increased lipid contents in microalgae , 2012 .

[41]  Andre M. Coleman,et al.  National microalgae biofuel production potential and resource demand , 2011 .

[42]  M. Sing,et al.  Strain selection and outdoor cultivation of halophilic microalgae with potential for large-scale biodiesel production , 2010 .

[43]  Alexander Zoelle,et al.  Cost and Performance Metrics Used to Assess Carbon Utilization and Storage Technologies , 2014 .

[44]  D. Kramer,et al.  The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments , 2014 .

[45]  Michael Kühl,et al.  Chlorophyll d: the puzzle resolved. , 2005, Trends in plant science.

[46]  Julie B Zimmerman,et al.  Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. , 2011, Environmental science & technology.

[47]  Graziella Chini Zittelli,et al.  Photobioreactors for Microalgal Biofuel Production , 2013 .

[48]  J. R. Benemann,et al.  Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report , 1996 .

[49]  R. P. Goebel,et al.  Design and analysis of microalgal open pond systems for the purpose of producing fuels: A subcontract report , 1987 .

[50]  William G. Davenport,et al.  Production and use , 2022, Extractive Metallurgy of Copper.

[51]  Joseph J. Michalsky,et al.  An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States , 2005 .

[52]  M. Huesemann,et al.  A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds , 2013, Biotechnology and bioengineering.

[53]  N. Boon,et al.  Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. , 2012, Biotechnology advances.

[54]  Liquid film mass transfer coefficients KL for O2 and C02 desorption from open thin-layer microalgal cultures into atmosphere , 1999 .

[55]  J. Doucha,et al.  Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate , 2006, Journal of Applied Phycology.

[56]  Benoit Guieysse,et al.  Universal temperature model for shallow algal ponds provides improved accuracy. , 2011, Environmental science & technology.

[57]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[58]  Pierre Trambouze,et al.  Scale-Up Methodology for Chemical Processes , 1993 .

[59]  Graziella Chini Zittelli,et al.  Photobioreactors for Mass Production of Microalgae , 2013 .

[60]  K. Lívanský Losses of CO2 in outdoor mass algal cultures : determination of the mass transfer coefficient KL by means of measured pH course in NaHCO3 solution , 1990 .

[61]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[62]  Senger,et al.  UV-A / BLUELIGHT RESPONSES IN ALGAE N 96-18136 , 2022 .

[63]  J. Brodie,et al.  PHYCOLOGY 4TH ED. , 2009 .

[64]  A. Richmond,et al.  CRC Handbook of microalgal mass culture , 1986 .

[65]  A. Prokop,et al.  Status of Algae as Vehicles for Commercial Production of Fuels and Chemicals , 2014 .

[66]  Ivan Málek,et al.  Dual Purpose Open Circulation Units for Large Scale Culture of Algae in Temperate Zones. I. Basic Design Considerations and Scheme of a Pilot Plant , 1970 .

[67]  C. Walter,et al.  1 Introduction – Discovering Microalgae as Source for Sustainable Biomass , 2012 .

[68]  D. Lewis,et al.  Biofuels from microalgae - an integrated process for a niche fuel market , 2013 .

[69]  J. Doucha,et al.  High Density Outdoor Microalgal Culture , 2014 .

[70]  J. Doucha,et al.  Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor , 2005, Journal of Applied Phycology.

[71]  Navid R. Moheimani,et al.  Open pond culture systems , 2013 .

[72]  B. Bugbee Effects of radiation quality, intensity, and duration on photosynthesis and growth , 1994 .

[73]  D. Feinberg,et al.  CO sub 2 sources for microalgae-based liquid fuel production , 1990 .

[74]  L. Erickson,et al.  Commercial Products from Algae , 2014 .

[75]  M. Borowitzka Dunaliella: Biology, production, and markets , 2013 .

[76]  W. Oswald,et al.  Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass , 1994 .

[77]  David Chiaramonti,et al.  Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible , 2013 .

[78]  Navid R. Moheimani,et al.  Algae for Biofuels and Energy , 2013, Developments in Applied Phycology.

[79]  Z. Cohen,et al.  Chemicals from Microalgae , 1999 .

[80]  R. Smith,et al.  Effects of solar UV radiation on aquatic ecosystems and interactions with climate change , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[81]  Michael A. Borowitzka,et al.  Micro-algal biotechnology. , 1988 .

[82]  J. Weissman,et al.  Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation , 1988, Biotechnology and bioengineering.

[83]  K. Terry,et al.  System design for the autotrophic production of microalgae , 1985 .

[84]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[85]  K. Livansky,et al.  Testing of fine-bubble aeration diffusers as CO2 saturation elements for outdoor microalgal cultures , 1998 .

[86]  J. C. Goldman,et al.  Outdoor algal mass cultures—I. Applications , 1979 .

[87]  K. Livansky Influence of some nutrient solution components and holding time of algal culture in CO2 gas saturator on the allowable length of culture flow and other parameters of CO2 supply into open cultivation units , 1992 .

[88]  John G. Day,et al.  Overcoming biological constraints to enable the exploitation of microalgae for biofuels. , 2012, Bioresource technology.

[89]  José M. Baptista,et al.  Light requirements in microalgal photobioreactors: an overview of biophotonic aspects , 2010, Applied Microbiology and Biotechnology.

[90]  J. Benemann,et al.  Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report , 1998 .

[91]  D Bubenheim,et al.  Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. , 1993, HortScience : a publication of the American Society for Horticultural Science.

[92]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[93]  Sunil Chhatre Modelling approaches for bio-manufacturing operations. , 2013, Advances in biochemical engineering/biotechnology.

[94]  Nigel W.T. Quinn,et al.  A Realistic Technology and Engineering Assessment of Algae Biofuel Production , 2010 .

[95]  J. C. Dodd Elements of Pond Design and Construction , 2017 .

[96]  Francisco Gabriel Acién Fernández,et al.  Downstream Processing of Cell‐Mass and Products , 2013 .

[97]  O. Bernard Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production , 2011 .

[98]  I. Dunn,et al.  Chemical Engineering Dynamics , 1994 .

[99]  Yusuf Chisti,et al.  A matter of detail: assessing the true potential of microalgal biofuels. , 2013, Biotechnology and bioengineering.

[100]  Thomas C. Vogelmann,et al.  Green Light Drives CO2 Fixation Deep within Leaves , 1998 .

[101]  M. Ardjmand,et al.  Efficient storage and utilization of CO2 in open raceway ponds for cultivation of microalgae , 2014, Korean Journal of Chemical Engineering.

[102]  Thongchai Srinophakun,et al.  Design of raceway ponds for producing microalgae , 2012 .

[103]  Said Attalah Energy Evaluation of the High Velocity Algae Raceway Integrated Design (ARID-HV) , 2012 .

[104]  M. Borowitzka,et al.  Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. , 2014, Bioresource technology.

[105]  M. Shinoda,et al.  Effects of cloud, atmospheric water vapor, and dust on photosynthetically active radiation and total solar radiation in a Mongolian grassland , 2012 .

[106]  C. J. Soeder Mikroalgenkultur im technischen Maßstab , 1971 .

[107]  Hiroshi Tamiya,et al.  Mass Culture of Algae , 1957 .

[108]  P. Schenk,et al.  High Lipid Induction in Microalgae for Biodiesel Production , 2012 .

[109]  Kristina M. Weyer,et al.  Theoretical Maximum Algal Oil Production , 2009, BioEnergy Research.

[110]  Hyeon-Hye Kim,et al.  Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. , 2004, HortScience : a publication of the American Society for Horticultural Science.

[111]  Martin A. Green,et al.  Limiting photovoltaic efficiency under new ASTM International G173‐based reference spectra , 2012 .

[112]  Raphael Slade,et al.  Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects , 2013 .

[113]  I. Dunn,et al.  Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation , 2000 .

[114]  F. Martelli,et al.  Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. , 2014 .

[115]  I. Ross,et al.  Selection, breeding and engineering of microalgae for bioenergy and biofuel production. , 2012, Trends in biotechnology.

[116]  M. Borowitzka Species and Strain Selection , 2013 .

[117]  Michael A. Borowitzka,et al.  Energy from Microalgae: A Short History , 2013 .

[118]  A. Belay Mass culture of Spirulina outdoors--the earthrise farms experience , 1997 .

[119]  A. Carvalho,et al.  Transfer of Carbon Dioxide within Cultures of Microalgae: Plain Bubbling versus Hollow‐Fiber Modules , 2001, Biotechnology progress.

[120]  K. Rusch,et al.  The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production , 2003 .

[121]  M. Borowitzka,et al.  The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant , 1984, Hydrobiologia.

[122]  Francesco Pappalardo,et al.  Mathematical modeling of biological systems , 2013, Briefings Bioinform..

[123]  A. Prokop,et al.  Potential of mass algae production in Kuwait , 1984, Biotechnology and bioengineering.

[124]  L. Nedbal,et al.  Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors , 1995, Journal of Applied Phycology.

[125]  J. Grobbelaar Microalgae mass culture: the constraints of scaling-up , 2011, Journal of Applied Phycology.

[126]  M. Steup Die Wirkung von blauem und rotem Licht auf die Synthese ribosomaler RNA bei Chlorella , 2004, Archives of Microbiology.

[127]  A. Darzins,et al.  The promise and challenges of microalgal‐derived biofuels , 2009 .

[128]  Ecophysiology of photosynthesis in macroalgae , 2012, Photosynthesis Research.

[129]  H. V. Landeghem,et al.  The development of spirulina algae cultivation , 1980 .

[130]  F. G. Acién,et al.  Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. , 2014, Bioresource technology.

[131]  Carl-Fredrik Mandenius,et al.  Measurement, Monitoring, Modelling and Control of Bioprocesses , 2013 .

[132]  Michael A. Borowitzka,et al.  Techno-Economic Modeling for Biofuels from Microalgae , 2013 .

[133]  J. Harbinson,et al.  An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. , 2010, Journal of experimental botany.

[134]  P. T. Vasudevan,et al.  Biodiesel production—current state of the art and challenges , 2008, Journal of Industrial Microbiology & Biotechnology.

[135]  J. R. Benemann,et al.  Effects of Fluctuating Environments on the Selection of High Yielding Microalgae , 1987 .

[136]  I. Ross,et al.  Microalgal production systems: global impact of industry scale-up , 2012 .

[137]  P. Pribyl,et al.  The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal algaScenedesmus obliquus , 2008, Folia Microbiologica.

[138]  M. Sulev,et al.  Sources of errors in measurements of PAR , 2000 .