Distance Approximating Trees: Complexity and Algorithms

Let Δ≥ 1 and δ≥ 0 be real numbers. A tree T=(V,E′) is a distance (Δ,δ)–approximating tree of a graph G=(V,E) if dH(u,v)≤Δ dG(u,v)+δ and dG(u,v)≤Δ dH(u,v)+δ hold for every u,v∈ V. The distance (Δ,δ)-approximating tree problem asks for a given graph G to decide whether G has a distance (Δ,δ)-approximating tree. In this paper, we consider unweighted graphs and show that the distance (Δ,0)-approximating tree problem is NP-complete for any Δ≥ 5 and the distance (1,1)-approximating tree problem is polynomial time solvable.

[1]  Ming-Yang Kao,et al.  Phylogeny Reconstruction , 2008, Encyclopedia of Algorithms.

[2]  Feodor F. Dragan,et al.  A Note on Distance Approximating Trees in Graphs , 2000, Eur. J. Comb..

[3]  Feodor F. Dragan,et al.  Distance Approximating Trees for Chordal and Dually Chordal Graphs , 1999, J. Algorithms.

[4]  Andrew Tomkins,et al.  A polylog(n)-competitive algorithm for metrical task systems , 1997, STOC '97.

[5]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[6]  David Peleg,et al.  Approximating Minimum Max-Stretch spanning Trees on unweighted graphs , 2004, SODA '04.

[7]  Sudipto Guha,et al.  Approximating a finite metric by a small number of tree metrics , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .

[9]  Arthur L. Liestman,et al.  Additive graph spanners , 1993, Networks.

[10]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[11]  Alain Guénoche,et al.  Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[13]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[14]  Robert Krauthgamer,et al.  Metric Embeddings—Beyond One-Dimensional Distortion , 2004, Discret. Comput. Geom..

[15]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[16]  Paul Chew,et al.  There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..

[17]  Feodor F. Dragan,et al.  Tree spanners on chordal graphs: complexity and algorithms , 2004, Theor. Comput. Sci..

[18]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[19]  Gary L. Miller,et al.  A new graph triconnectivity algorithm and its parallelization , 1992, Comb..

[20]  D. Wagner,et al.  Additive Tree Spanners , 2004 .

[21]  Erich Prisner Distance Approximating Spanning Trees , 1997, STACS.

[22]  Robert Krauthgamer,et al.  The intrinsic dimensionality of graphs , 2003, STOC '03.

[23]  Anupam Gupta Improved Bandwidth Approximation for Trees and Chordal Graphs , 2001, J. Algorithms.

[24]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[25]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .