An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations

In a recent paper we have introduced a postprocessing procedure for the Galerkin method for dissipative evolution partial differential equations with periodic boundary conditions. The postprocessing technique uses approximate inertial manifolds to approximate the high modes (the small scale components) in the exact solutions in terms of the Galerkin approximations, which in this case play the role of the lower modes (large scale components). This procedure can be seen as a defect-correction technique. But contrary to standard procedures, the correction is computed only when the time evolution is completed. Here we extend these results to more realistic boundary conditions. Specifically, we study in detail the two-dimensional Navier-Stokes equations subject to homogeneous (nonslip) Dirichlet boundary conditions. We also discuss other equations, such as reaction-diffusion systems and the Cahn-Hilliard equations.

[1]  Edriss S. Titi,et al.  A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations , 1994 .

[2]  Edriss S. Titi,et al.  Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation , 1991 .

[3]  Julia Novo Martín Postproceso de métodos espectrales , 1998 .

[4]  Roger Temam,et al.  A nonlinear Galerkin method for the Navier-Stokes equations , 1990 .

[5]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[6]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .

[7]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[8]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[9]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[10]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[11]  Edriss S. Titi,et al.  C1Approximations of Inertial Manifolds for Dissipative Nonlinear Equations , 1996 .

[12]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[13]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[14]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[15]  R. Temam Navier-Stokes Equations , 1977 .

[16]  D. Rose,et al.  Analysis of a multilevel iterative method for nonlinear finite element equations , 1982 .

[17]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[18]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[19]  Linda M. Holt Singularities produced in conormal wave interactions , 1995 .

[20]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[21]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[22]  Roger Temam,et al.  The algebraic approximation of attractors: the finite dimensional case , 1988 .

[23]  J. Douglas,et al.  A Galerkin method for a nonlinear Dirichlet problem , 1975 .

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  Bosco García-Archilla Some Practical Experience with the Time Integration of Dissipative Equations , 1995 .

[26]  Lois Mansfield,et al.  On the Solution of Nonlinear Finite Element Systems , 1980 .

[27]  M. Marion,et al.  A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .

[28]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[29]  Roger Temam,et al.  Subgrid modelling and the interaction of small and large wavelengths in turbulent flows , 1991 .

[30]  Mary F. Wheeler,et al.  Two-grid methods for mixed finite element approxi-mations of nonlinear parabolic equations , 1994 .

[31]  Donald A. Jones,et al.  On the effectiveness of the approximate inertial manifold—a computational study , 1995 .

[32]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[33]  Javier de Frutos,et al.  Time integration of the non-linear Galerkin method , 1995 .

[34]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[35]  Javier de Frutos,et al.  A postprocessed Galerkin method with Chebyshev or Legendre polynomials , 2000, Numerische Mathematik.

[36]  R. Temam,et al.  Attractors for the Navier-Stokes equations: Iocalization and approximation , 1989 .

[37]  R. Rautmann On the convergence rate of nonstationary Navier-Stokes approximations , 1980 .

[38]  Hantaek Bae Navier-Stokes equations , 1992 .

[39]  Roger Temam,et al.  Dynamical systems, turbulence and the numerical solution of the Navier-Stokes equations , 1989 .

[40]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[41]  G. Karniadakis,et al.  Generalized Stokes eigenfunctions: a new trial basis for the solution of incompressible Navier-Stokes equations , 1994 .

[42]  David M. Sloan,et al.  Numerical Solution of a Nonlinear Dissipative System Using a Pseudospectral Method and Inertial Manifolds , 1995, SIAM J. Sci. Comput..

[43]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[44]  王碧祥 APPROXIMATE INERTIAL MANIFOLDS TO THE NAVIER-STOKES EQUATIONS , 1994 .

[45]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[46]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[47]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[48]  M. Marion,et al.  On the construction of families of approximate inertial manifolds , 1992 .